

Technical Debt and the Reliability of Enterprise Software Systems:

A Competing Risks Analysis

Narayan Ramasubbu

Chris F. Kemerer

University of Pittsburgh

February 2015

forthcoming in Management Science, 2015

Technical Debt and the Reliability of Enterprise Software Systems:

A Competing Risks Analysis

Abstract

Enterprise software systems are required to be highly reliable as they are central to the business

operations of most firms. However, configuring and maintaining these systems can be highly complex,

making it challenging to achieve high reliability. Resource constrained software teams facing business

pressures can be tempted to take design shortcuts in order to deliver business functionality more quickly.

These design shortcuts and other maintenance activities contribute to the accumulation of technical debt,

that is, a buildup of software maintenance obligations that need to be addressed in the future. We model

and empirically analyze the impact of technical debt on system reliability by utilizing a longitudinal

dataset spanning the 10 year lifecycle of a commercial enterprise system deployed at 48 different client

firms. We use a competing risks analysis approach to discern the interdependency between client and

vendor maintenance activities. This allows us to assess the effect of both problematic client modifications

(client errors) and software errors present in the vendor-supplied platform (vendor errors) on system

failures.

 We also examine the relative effects of modular and architectural maintenance activities

undertaken by clients in order to analyze the dynamics of technical debt reduction. The results of our

analysis first establish that technical debt decreases the reliability of enterprise systems. Second, modular

maintenance targeted to reduce technical debt was about 53% more effective than architectural

maintenance in reducing the probability of a system failure due to client errors, but had the side-effect of

increasing the chance of a system failure due to vendor errors by about 83% more than did architectural

maintenance activities. Using our empirical results we illustrate how firms could evaluate their business

risk exposure due to technical debt accumulation in their enterprise systems, and assess the estimated net

effects, both positive and negative, of a range of software maintenance practices. Finally, we discuss

implications for research in measuring and managing technical debt in enterprise systems.

Keywords: technical debt, enterprise systems, software reliability, architectural maintenance, modular maintenance,

software maintenance, software product management, software package customization, competing risks

modeling, Integrated Development Environment (IDE) toolkits, software risks, software complexity,

Enterprise Resource Planning (ERP) systems, Commercial Off The Shelf (COTS) software.

Technical Debt and the Reliability of Enterprise Software Systems:

A Competing Risks Analysis

1. Introduction

Enterprise software systems, such as Enterprise Resource Planning (ERP) systems, are central to

the business operations of a wide variety of firms, and constitute one of the biggest spending categories in

their IT budgets (Hitt et al. 2002). Worldwide spending on enterprise software systems is estimated to

exceed 300 billion U.S. Dollars, with a forecasted growth of about 6% in the next few years (Gartner

2013). Enterprise software systems are required to be highly reliable, as system failures could cause

severe disruptions to the business processes that they support (Wu et al. 2013). However, prior research

shows that achieving this high reliability is often difficult, in part due to the challenges involved in

implementing and maintaining these systems over a long planning horizon amidst increasing business

pressures that mandate shortened cycle times for software projects (Banker et al. 1998; Banker and

Slaughter 2000; Masini and Wassenhove 2009).

Software teams facing such challenges may, in part, resort to design shortcuts to rapidly deliver

the functionality demanded by business and thereby trade off the potential longer-term benefits of

appropriate software design investments for these short-term business benefits (Austin 2001; Woodard et

al. 2013)
1
. By taking design shortcuts and other maintenance activities software organizations incur what

has been referred to as technical debt, that is, accumulated maintenance obligations that must be

addressed in the future (Brown et al. 2010; Woodard et al. 2013; Ramasubbu and Kemerer 2014). For

example, engineers facing time pressures to deliver functionality may hardcode text strings, saving the

additional design efforts needed for properly externalizing text fragments from software code. However,

such shortcuts, while expedient, tend to create long-term problems. For example, the well-known “Y2K”

problem was the result of a coding practice that was adequate in the short run, but created a long-term

maintenance obligation when all of the two digit date fields had to eventually be remediated to

accommodate the change in the century. Enterprise systems laden with high levels of technical debt are

not only prone to failures, but also create hindrances for the successful execution of business strategies

(Woodard et al. 2013). Technical debt accumulation, combined with business pressures and limited

resources, can place software teams in a downward cycle of taking design shortcuts, leading to an

increase in system failures, leading to more expensive and difficult maintenance efforts, which may, in

turn, lead to more design shortcuts. Thus, it could be expected that reducing the amount of technical debt

1 Customizations at the client site may be based on requirements or functionality not available in the COTS software. These

customizations may not always be possible to accommodate within the confines of the vendor prescribed design and development

standards. These functional changes associated with customizations are likely to cause compatibility issues with the vendor’s

native software, irrespective of how these changes are made, including, but not limited to, design shortcuts.

over an enterprise system’s evolution would confer business benefits by improving system reliability, that

is, the extent to which a system is resilient to failures (Ramdas and Randall 2008; Guajardo et al. 2012).

Technical debt reduction in an enterprise software systems environment is difficult, as these

applications are often built on an underlying vendor-supplied, commercial-off-the-shelf (COTS) platform

which is customized by clients for their use (Basili and Boehm 2001; Chellapa et al. 2010; Subramanyam

et al. 2011). Maintenance of such systems is especially challenging because of the interdependencies and

potential for conflict between the underlying, vendor-supplied platform and the customizations done by

individual clients (Masini and Wassenhove 2009; Ceccagnoli et al. 2012; Huang et al. 2013). For

example, software update patches supplied by vendors as part of their maintenance plans could be

incompatible with the customizations implemented by clients. Similarly, design shortcuts taken by clients

could damage the overall software architecture of the underlying platform and disrupt maintenance plans

offered by vendors (MacCormack and Verganti 2003; MacCormack et al. 2008). These

interdependencies make it difficult to measure and assess the impact of technical debt on system

reliability and therefore to plan the software maintenance activities necessary to reduce the debt. As a

consequence of this complexity and the longitudinal nature of the required data there is only a very

limited set of empirical studies of technical debt despite the business value in rigorously assessing the

economic payoff from software maintenance activities in the presence of interdependencies between

vendor-supplied COTS software and client-driven customizations.

This study addresses this need by analyzing a longitudinal dataset spanning the10 year lifecycle

of a COTS-based enterprise software system deployed at 48 different client firms. We address the

challenging research need of accounting for the interdependencies between client and vendor maintenance

of COTS-based enterprise systems by distinguishing system failures due to software errors that originate

in the modifications made by a client (client errors) from errors that are residual in the platform supplied

by the vendor (vendor errors). Then, utilizing a competing risks analysis empirical approach, we assessed

the impact of technical debt on system failures due to these client and vendor errors (Fine and Gray 1999;

Pintilie 2007; Zhou et al. 2012; Kuk and Varadhan 2013). In our analysis an important focus was on the

relative effects of modular and architectural design maintenance activities. Modular design maintenance

activity focuses on improvements in individual modules that do not alter the interdependencies among the

modules of a system. In contrast, maintenance activities targeting architectural design improvements

focus on the interdependencies among the modules and the overall structure of a system (Henderson and

Clark 1990; MacCormack et al. 2006, 2008). Utilizing the 10 year lifecycle data we empirically assess the

impact of both technical debt and the modular and architectural maintenance activities undertaken by the

48 client firms on system reliability (i.e., the probability of a system failure).

The results of our analysis first establish that technical debt is associated with an increase in the

probability of a system failure (a decrease in reliability). Next, we find that modular maintenance

activities undertaken by the client firms were 53% more effective in reducing the chance of a system

failure due to client errors than were architectural maintenance activities. However, modular maintenance

undertaken by client firms also increased, by about four fold, the chance of a system failure due to vendor

errors present in the underlying COTS platform. In contrast, architectural maintenance undertaken by

clients, although less effective in improving the reliability of enterprise systems with respect to client

errors, had only half the chance of causing a system failure due to vendor errors than did modular

maintenance. These results establish the interdependency between client and vendor maintenance

activities in COTS-based enterprise systems, and illustrate the dynamics of technical debt reduction and

its effect on the reliability of these systems.

This study makes four primary research and practical contributions in advancing the software

maintenance research literature on technical debt. First, most software maintenance research studies have

focused on single site, bespoke systems implementations, and researchers have called for investigations of

multi-site implementations of packaged enterprise software, given their increased practical importance

(e.g., Williams and Pollock 2012). And to understand the full implications of enterprise solutions for

organizations scholars highlight the need to examine software implementations over multiple use settings

and time. Our study addresses these needs by analyzing the implementations of a COTS-based enterprise

system at 48 different client sites over a ten year period. Second, rigorous empirical analysis of the

reliability of enterprise software systems has generally been limited in prior research due to the lack of

fine-grained and reliable data on software failures. Our ten year longitudinal dataset allows us to

empirically measure the technical debt accumulated in real world enterprise software and to assess its

dynamic impact on system reliability. Third, due in part to methodological challenges, prior software

maintenance studies did not delineate risks arising from the different aspects of an enterprise software

design and its implementation context, which prevented the accurate assessment of the impacts of

technical debt on reliability of software systems. We address this challenge by utilizing a competing risks

analysis approach that enables us to account for event-specific hazards that impact the failure of

enterprise software systems. Finally, we utilize our empirical results to illustrate how firms could evaluate

their business risks exposure due to technical debt accumulation in their enterprise systems and assess the

likely effects, both positive and negative, of a range of software maintenance practices.

The rest of the paper is organized as follows. In §2 we provide a theoretical background for

client-vendor interdependence in COTS-based software product development, and develop our

hypotheses by utilizing relevant product development, technical debt, and software engineering

economics research literatures. We also describe our conceptual model. In §3 we enumerate our data

collection procedures and explain the competing risks analysis methodology in §4. We present the results

of our analysis in §5 and discuss implications for research and practice in §6. §7 provides a brief

summary and conclusion.

2. Theoretical Background and Hypotheses

We begin by introducing the product development literature that explains how COTS vendors

address client demand heterogeneity by providing a toolkit approach to software product development.

Then, we elaborate how maintenance done by clients using the vendor-supplied toolkits could result in

technical debt accumulation in COTS-based enterprise systems, which introduces interdependencies

between the vendor and client product development tasks. Building on this background, and on empirical

results of prior software maintenance studies, we develop our hypotheses relating technical debt, software

maintenance, and the reliability of enterprise systems.

2.1. Demand Heterogeneity and Technical Debt in COTS Product Development

In a COTS-based software development model client firms purchase a software package that

typically consists of a pre-configured version of the software and the necessary tools for further client-

specific customization and development (Masini and Wassenhove 2009; Subramanyam et al. 2011;

Ceccagnoli et al. 2012; Huang et al. 2013). Such a toolkit approach to product development has been

attributed by von Hippel and Katz to a vendor strategy of addressing heterogeneous customer demands by

shifting the costs and risks associated with specific needs-related product development to users (von

Hippel and Katz 2002). They have proposed that the toolkit approach aims to partition product

development and ongoing maintenance tasks into two different categories of subtasks, each owned

independently by the COTS vendor and client firms respectively, and that such a partition empowers

users to learn and innovate through iterative trial-and-error activities without the need for sole reliance on

the vendor. Supporting this proposition, case studies of both manufacturing-related product development

and open source software products have shown that the toolkit approach tends to lower overall costs and

to improve both product development and maintenance productivity for users (von Hippel 1998; Franke

and von Hippel 2003; Franke and Piller 2004).

However, there are two important aspects of the toolkit approach in COTS-based software

development that warrant further investigation. First, it is not clear if ongoing product development and

maintenance activities for a product-like COTS software that evolves continuously during its lifecycle can

be fully partitioned into independent client and vendor subtasks (Barry et al. 2006). The evolution of the

vendor-supplied software package and its associated toolkit has an impact on a client’s development and

maintenance activities by either constraining or expanding the design space available for specific needs-

related customizations (Baldwin et al. 2006). Similarly, needs-related customizations of a software

package enacted by clients can also have an impact on the product development decisions of the vendor

(MacCormack et al. 2001; Woodard et al. 2013). For example, a vendor might incorporate a popular

modification enacted by several clients into its standard release of the software (Ethiraj et al. 2012). Or,

perhaps more rarely, a vendor could also delete functionality from its standard release of the software

package if it was incompatible with the existing infrastructure of several of its important clients (Deelstra

et al. 2005; Ethiraj et al. 2012). Thus, the likely interdependence between the ongoing product

maintenance activities of a vendor and its clients needs to be carefully considered while assessing the

performance of COTS-based enterprise software systems.

Second, the manner in which a client uses the toolkit supplied by a vendor for ongoing product

development and maintenance activities needs to be examined when assessing the performance outcomes

of COTS-based enterprise systems. The toolkit supplied by the vendor enables clients to configure and

customize the systems to suit their specific needs, as well as to modify the source code to add

functionality that is not offered by the standard vendor product releases. However, it is well-documented

that resource-constrained software teams tend to take design shortcuts in enacting these enterprise system

modifications by violating vendor-specified standards, trading off longer-term benefits of appropriate

design investments for short-term business benefits, such as quicker roll-out of the functionality (Austin

2001; Brown et al. 2010; Woodard et al. 2013). These design shortcuts tend to result in the accumulation

of technical debt in enterprise systems. This technical debt, like financial debt, accumulates “interest”

over time, which is to say that the costs of fixing design shortcuts to reduce enterprise systems technical

debt increase with time (Brown et al. 2010; Curtis et al. 2012; Ramasubbu and Kemerer 2014). If not

addressed through appropriate maintenance, technical debt severely impacts the evolution of an enterprise

system by making it progressively harder for software teams to add new functionality and to rectify

software errors (Ramasubbu and Kemerer 2014). Furthermore, in a COTS-based enterprise system the

accumulation of technical debt by a client is generally not visible to a vendor, adding further complexity

to the interdependence between the vendor and client tasks.

In this study we extend the examination of the toolkit approach to software product development by

focusing on the interdependence between the vendor and client maintenance activities, and by accounting

for the technical debt existing in enterprise software systems. Specifically, we distinguish system failures

due to client errors and system failures due to vendor errors. Client errors are the software errors that

originate from the client-induced modifications of a COTS-based enterprise system. Client errors occur

because of problems associated with customizations, for example developing use-specific functionality

through design shortcuts that violate vendor-specified programming standards (Ethiraj et al. 2012;

Woodard et al. 2013). Such violations cannot be monitored and prevented by the vendor because the

toolkits through which the source code modifications are performed are locally installed and used by

clients. In addition to client errors, the reliability of COTS-based enterprise systems is also affected by

residual errors in the vendor-supplied software. It is well-documented that software vendors necessarily

optimize software product testing and verification activities on a variety of factors which prevents them

from achieving zero defects through quality control (Slaughter et al. 1998; Kemerer and Paulk 2009). As

a result, COTS software products released by vendors often contain residual errors, which we term as

vendor errors. By distinguishing systems failures due to client errors and those due to vendor errors we

propose to study the distinct effects of technical debt and maintenance activities on the different types of

systems failures. In the following sections we explicate the relationships among these constructs and

develop the logic leading to our hypotheses.

2.2. Technical Debt and System Reliability

As explained above technical debt arises from design shortcuts and non-standard system changes

undertaken by client software teams. Resource-constrained software teams under pressure to quickly

implement functionality requested by business users may adopt expedient “quick and dirty” methods in

lieu of methods recommended by vendors (Brown et al. 2010; Woodard et al. 2013). Such system

changes increase the interdependencies between the different functions within a module and across the

various modules of a system, and therefore increase the overall structural complexity of the system

(Austin 2001; Ethiraj and Levinthal 2004). Software that is structurally more complex has been shown to

be more error-prone, as higher levels of structural complexity hinder program comprehension and cause

sub-optimal allocation of maintenance tasks in software teams (Banker and Slaughter 2000; Darcy et al.

2005; Kemerer and Darcy 2005, Ramasubbu et al. 2012). Higher levels of technical debt can also cause

unpredictable ripple effects within a system, as errors propagate through the myriad interconnections

between the system’s various modules, often causing maintenance activities to be less effective relative to

what they might have been (Kemerer 1995; Banker et al. 1998). Over time this contributes to software

entropy, where the code “decays”, that is, deteriorates in quality, causing unpredictable system failures

(MacCormack et al. 2006; Eick et al. 2001).

Technical debt also increases the knowledge asymmetry between COTS vendors and their clients.

Vendors possess knowledge unique to the development and maintenance of their toolkits, whereas clients

possess knowledge related to their specific use cases (von Hippel and Katz 2002). Such unique

knowledge possessed by both the vendors and the clients is often “sticky,” that is, transfer of the

knowledge between these parties is costly, which tends to contribute to knowledge asymmetry between

vendors and clients (Ko et al. 2005; Esteves and Bohorquez 2007). Accumulation of technical debt by

clients and the resulting increase in structural complexity increase the differences between client-modified

versions of the enterprise system and the standard configuration of the system supported by the vendor.

Combined with the “stickiness” of vendor and client knowledge the resulting ineffective knowledge

transfer over the lifecycle of a COTS-based enterprise system hampers the timely adoption of vendor-

provided problem solutions, best practices, and design standards that could otherwise improve

performance of the systems at client installations (Slaughter and Kirsch 2006; Woodard et al. 2013).

Thus, technical debt accumulation can cause software teams to be in a continuous downward cycle

of taking design shortcuts, leading to increased structural complexity, leading to more expensive and

difficult maintenance efforts, which may, in turn, lead to more technical debt accumulation and new

design shortcuts. Therefore, all else being equal, we expect enterprise systems with higher levels of

technical debt to be more error prone and less reliable, which leads to our first set of hypotheses:

Hypothesis 1: Technical Debt and Enterprise System Failures

 H1a: A higher level of technical debt in an enterprise software system is associated with

a higher probability of a system failure due to client errors.

 H1b: A higher level of technical debt in an enterprise software system is associated with

a higher probability of a system failure due to vendor errors.

2.3. Technical Debt Reduction through Modular and Architectural Software Maintenance

Software maintenance activities to reduce technical debt in enterprise systems focus on rolling back

the shortcuts taken by software teams and reducing the resulting structural complexity (Marinescu 2012;

Ramasubbu and Kemerer 2014). Such maintenance activities could be categorized as either addressing

software design within the modules of a system (modular) or across several modules of the system

(architectural). Modular maintenance activities to reduce technical debt include fixing flaws within a

module (such as increasing cohesion among functions and methods within a module), altering complex

string manipulation functions, and removing unreferenced methods, hard-coded business rules and direct

usage of database tables (Curtis et al. 2012). In contrast, architectural maintenance activities to reduce

technical debt focus on improving system-level modularity by simplifying the interconnections between

the modules of a system (e.g., decreasing unnecessary coupling) and thereby minimizing the ripple effects

due to modular errors (Banker et al. 1998; MacCormack et al. 2006).

While prior software maintenance studies have shown that maintenance activities undertaken to

reduce structural complexity of a system improve software quality (Subramanyam and Krishnan 2003;

Subramanyam et al. 2011), the relative efficacies of modular and architectural maintenance activities in

the presence of technical debt remains an open empirical question. Previous research in product

development (e.g., Henderson and Clark 1990) has examined modular and architectural product

development activities to assess the performance of innovation efforts of organizations. Examining the

relative efficacies of modular and architectural software maintenance activities in COTS-based enterprise

system maintenance is needed as it would aid in furthering our understanding of the dynamics involved in

technical debt reduction, and could help firms to organize software maintenance activities more

efficiently (Curtis et al. 2012). Client software maintenance activities specifically target client-induced

modifications, and since clients possess the knowledge related to their specific use-cases they are well-

positioned to identify erroneous business logic, conduct root-cause analysis, and perform preventive

maintenance (Garg et al. 1998). However, client-induced system modifications, especially those enacted

by taking design shortcuts, might also alter system architecture. Client software teams tend to have

limited knowledge and resources to roll back such architectural changes without error (Woodard et al.

2013). This is because details about the architectural aspects of COTS systems, such as interfaces with

database schemas, global views of cross-module method calls, and other system-level configurations, are

typically not fully disclosed by vendors to clients, making it challenging for client software teams to

reduce technical debt by revamping system architectures (Davenport 1998; Masini and Wassenhove 2005;

Woodard et al. 2013). Therefore, we expect modular maintenance of clients to be more effective in

reducing system failures due to client errors than will architectural maintenance, which leads to our

second set of hypotheses:

Hypothesis 2: Software Maintenance and Client Errors

H2a: Modular maintenance will be associated with a lower probability of a system

failure due to client errors.

H2b: Architectural maintenance will be associated with a lower probability of a system

failure due to client errors.

H2c: Modular maintenance will be associated with a lower probability of a system

failure due to client errors than will architectural maintenance.

Although both modular and architectural maintenance to reduce technical debt can be expected to

help reduce client errors (H2a and H2b), in the presence of knowledge asymmetry there is an increased

chance that these maintenance activities targeted at reducing client errors in a system could introduce new

hazards by activating vendor errors that were dormant in the system (Parnas 1994; Reiss 2006; Kapur et

al. 2011). Case studies of long-term enterprise systems usage have documented how client-driven

maintenance activities could be in conflict with the vendor’s planned product maintenance (Vogt 2002;

Woodard et al. 2013). The chances of such conflicts increase when the enterprise system continues to

evolve during its entire lifecycle and when the vendor and client planning horizons for the system are

divergent (Barry et al. 2006). It is common for vendors of enterprise systems not to reveal development

and maintenance roadmaps that cover the entire lifecycle of a product, but only to disclose activities

pertaining to shorter time periods through, for example, annual release notes (Huang et al. 2013;

Ceccagnoli et al. 2012). This gives enterprise software product vendors the necessary flexibility to adapt

to new technological and market conditions, including extending the lifecycle of a product, or even

abandoning a product in favor of a new technology (Greenstein and Wade 1998; MacCormack et al.

2001; Gjerde et al. 2002).

However, the limited release of information on the vendor’s product development and maintenance

roadmap often causes clients to address product limitations through their own self-driven activities (von

Hippel 1998; Andersen and Morch 2009). Such client-initiated maintenance activities in the presence of

knowledge asymmetry and technical debt increase the chance of conflicts with newer versions of

components released by the vendor, such as new APIs, database schema alterations, and user interface

specifications (Woodard et al. 2013). Therefore, we could expect both modular and architectural

maintenance undertaken by clients in order to reduce technical debt to increase the probability of system

failure due to vendor errors. While architectural maintenance may not be as effective as modular

maintenance in reducing client-specific technical debt (hypothesis H2c), it is expected to have a lower

chance of accidentally triggering any dormant vendor errors. This is because, unlike architectural

maintenance, modular maintenance activities initiated by clients do not typically take into consideration

system-level design parameters and interrelationships between and among the different modules of a

system. Thus, the chance of conflicts between clients’ modular technical debt reduction and vendor-

driven platform-level changes is expected to be particularly high. Even though knowledge asymmetry

between the vendor and client teams renders any client-driven maintenance activities to be less effective

in preventing system failures due to vendor errors, architectural maintenance activities provide better

opportunities for client teams to identify potential conflicts with vendor-driven platform changes. Thus,

we expect client modular technical debt reduction to be associated with a higher chance of system failures

due to vendor errors than will clients’ architectural maintenance. The above effects are captured in the

following set of hypotheses:

Hypothesis 3: Software Maintenance and Vendor Errors

H3a Modular maintenance will be associated with a higher probability of a system

failure due to vendor errors.

H3b Architectural maintenance will be associated with a higher probability of a system

failure due to vendor errors.

H3c: Modular maintenance will be associated with a higher probability of a system

failure due to vendor errors than will architectural maintenance.

All of these hypothesized effects are summarized in Table 1.

Table 1. Technical Debt Reduction and System Failures
 Probability of a system failure due

to Client errors

Probability of a system failure due

to Vendor errors

Technical debt H1a: + H1b: +

Modular maintenance H2a: ― H3a: +

Architectural maintenance H2b: ― H3b: +

Relative effects of modular vs.

architectural maintenance

H2c: modular < architectural H3c: modular > architectural

2.4. Conceptual Model

Our conceptual model of the competing risks analysis approach is shown in Figure 1. The Client

Model in Figure 1 shows the conceptualized effects of technical debt, modular maintenance, and

architectural maintenance on the probability of a system failure due to client errors, and portrays a system

failure caused by vendor errors as a competing event. The Vendor Model in Figure 1 captures the effect

of the independent variables on the chance of a system failure due to vendor errors as the primary focus,

and treats a system failure due to client errors as a competing event. Figure 1 also shows that we control

for covariates other than the main independent variables, and these covariates are described and discussed

further in §3.4. Overall, our conceptualization enables the accounting of both event-specific hazards and

the analysis of distinct effects of covariates on system failures.

Figure 1. Conceptual Model

3. Research Site and Data Collection

We collected data pertaining to the lifecycle of a COTS enterprise resource planning (ERP)

software package from a leading multinational vendor and its clients. The package was first released by

the vendor in 2002 and was in continuous operation until 2012 when it was permanently retired in favor

of a new product. The package consisted of a preconfigured version of the application and an integrated

development environment (IDE), which was a toolkit that clients could use to modify the preconfigured

version. The vendor-supplied IDE supported a proprietary programming language similar to C++ and a

variety of relational databases. The vendor also maintained a client resource website, which had

extensive training materials for learning the programming language supported by the toolkit. Throughout

the ten year lifecycle of the product the vendor added functionality to both the preconfigured application

and to the toolkit. The vendor also took responsibility for the maintenance of the preconfigured software

package and toolkit, and provided regular updates to fix their residual errors.

We began our data collection efforts in cooperation with the product management division of the

vendor. We collected archival data on the evolution of the product, including the source code pertaining

to all versions of the product released during its ten year lifecycle. For each release of a new version of

the product in the ten year time period we collected the corresponding release notes, which contained

detailed information on the product roadmap, corrected vendor errors, and the anticipated rollout dates of

the next generation of functionality.

The vendor maintained a database of all clients who had purchased the product and a separate

team, called the installed-base support team, was in charge of post-sale customer support and maintenance

activities. Clients (typically Fortune 500 firms) purchased licenses from the vendor to install the software

package in their premises. Clients used the toolkit to view and edit source code of the ERP software

package, alter certain system-level configurations, modify business logic embedded in the source code,

and alter a section of the database tables. All modifications done by clients were system labeled using

unique identifiers and timestamps. All client-modified modules were automatically disabled from

receiving updates from the vendor and had to be manually patched by the clients. Typically, the regular

maintenance updates from the vendor were communicated through a portal called the Customer Support

Network (CSN), and designated client administrator personnel were automatically notified when new

vendor-supplied software updates were available for installation.

Through the CSN channel we contacted the client firms to gather data on their specific

installations of the product. Initially, out of the total universe of 117 firms in the vendor’s client database,

75 client firms responded to our request to study their implementations. However, given the data demands

of the research we were limited to gathering the full set of data for this study from 48 customer

installations. We checked for any potential bias in client participation by comparing the participant and

non-participant client firms for their size, employee count, product versions, and sales revenues, and did

not record any significant differences. Similar to the archival data we collected from the vendor, we

collected source code from all the 48 client firms and stored them in a version control database. We then

contacted the individual project managers in the client firms to collect data on the software personnel who

worked on the client installations. In some cases the human resource managers of the client firms also

provided additional data on the experience level of software teams in the firms.

Once we had the archival data in place we processed it in three stages. In the first stage we

performed a series of sequence and phase analyses to track the evolution of the vendor-supplied product

and the 48 variants at the client firms (Kemerer and Slaughter 1999). We broke down the ten year

lifecycle of the product into 120 phases (12 months x 10 years) and tracked changes to the software

within and across these phases. Through this we were able to map the growth of functionality in the

vendor and client versions of the system for the entire ten year lifecycle. The sequence and phase

analysis also helped us derive the software volatility metric from the changes we observed in the distinct

phases of the product’s lifecycle. We utilized software mining and version control tools
2
 provided by the

vendor to compare the source code pertaining to the different versions of the product at different time

intervals. After the source code modifications were identified in client systems we assessed whether the

client-initiated modifications detrimentally altered structural complexity, and thereby contributed to

technical debt. Following the best practices prescribed in the literature (Curtis et al. 2012; Marinescu

2012), we identified these detrimental modifications by assessing whether the alterations violated vendor-

prescribed design and development standards. For example, if a source code modification enacted direct

database access or complex method calls without utilizing prescribed APIs, it was ascribed as

contributing to the buildup of technical debt. Through the unique labels and timestamps associated with

the source code modifications in client versions we were able to trace and cluster changes with the same

change id and timestamp to identify the groups of modules and their interfaces which were impacted by a

specific client-initiated change. This helped us to identify whether a particular client-initiated change was

primarily modular maintenance or architectural maintenance
3
.

In the second stage of data preparation we traced all system failures reported by client firms and

mapped the communication logs present in the CSN system with the product version control logs supplied

by the clients. For each system failure we marked the origin point of the error in the corresponding source

code version, and categorized system failures as either client errors or vendor errors
4
. We further

corroborated the identified cause of errors with the quality control and post-mortem reports that were

logged in the CSN system.

2
 Additional details on the change sequence analysis and software code mining process are presented in §A1 of the online

Appendix for the interested reader.
3 We identified clusters of source code changes that happened at a given time (evolutionary coupling) and then compared

evolutionary coupling sequences with the actual modular dependencies (structural coupling) to identify whether a particular

source code change was primarily related to a modular or architectural maintenance activity. Additional details are presented in

§A1 of the online Appendix. See also Figure 2 for an overview of the verification process.
4 Additional details on the cause-effect analysis for categorizing client and vendor errors are presented in §A1 of the online

Appendix. Also see Figure 2 for an overview of the verification process.

In the final stage of our data preparation we engaged with the product management and

programming personnel at both the vendor and the client sites to verify our coding of the different facets

of the archival data. Programmers helped us verify whether our coding of key customizations in source

code was categorized correctly as adhering to the vendor-prescribed design standards or not. We utilized

the client software quality assurance personnel to audit our archival data and to verify if the maintenance

activities we identified for a given time period correctly matched with the internal project management

records. Finally, product management personnel at the vendor site verified the mapping of sequence and

phase analysis we derived from source code changes with the evolutionary milestones of the product as

recorded in the internal product release notes.

The above data collection and verification steps are summarized in Figure 2. An overview of the

dataset structure and a walkthrough example from the dataset illustrating the evolution of an application

at a client site, technical debt accumulation in the system, the modular and architectural maintenance

undertaken by the client, and the impact on system failures are presented in §A2 and §A3 of the online

Appendix.

Figure 2. Data Collection and Verification Steps

3.1. Constructs and Measurement

3.2. Dependent Variable: System Reliability

The dependent variable of interest in our analysis is the reliability of an enterprise system, which is

measured as the extent to which the system is resilient to failures
5
. Our dataset captures all of the system

failure incidences at 48 client firms during the ten year observation period of this study. To assess a

system’s resilience to failure we calculate the time interval (hours) between subsequent incidences of

system failures at a client site, and utilize this time-to-failure variable for survival analysis (Ramdas and

Randall 2008; Guajardo et al. 2012). The specific competing risk analysis approach we utilize for

modeling the failure of an enterprise system is further elaborated in §4.

3.3. Independent Variables

3.3.1. Technical Debt

We measure the technical debt accumulated in a client firm’s enterprise system by tracking client-

driven modifications of the COTS systems that violated design standards prescribed by the COTS vendor

(Curtis et al. 2012; Woodard et al. 2013). Specifically, we tracked all source code modifications

undertaken by a client in the ten year lifecycle of their system, and derived three variables to capture the

accumulation of technical debt. First, we calculated the percentage of client-driven source code

modifications that did not adhere to vendor-prescribed standards to capture the overall extent of

problematic alterations undertaken by a client. Then, we categorized these customizations into

modifications that altered business logic and those that altered the vendor-provided data schemas. Finally,

for all newly client-added source code, we examined the functional calls and database access statements

in the source code to identify the incidences of non-use of application programming interfaces (APIs)

prescribed by a vendor, and derived the total number of API violations variable. The three variables, the

percentage of problematic customizations pertaining to business logic, percentage of data schema

modifications that violated vendor’s master data standards, and the number of API violations, together

capture the overall extent of technical debt in a client’s system by accounting for design shortcuts in

newly added source code as well as alterations done to existing source code (Curtis et al. 2012; Marinescu

2012). As shown in Figure 2, all of these research measurements (and the ones described below) were

validated by vendor and client technical staff.

5
 The term “system failure” here refers to the “critical” category of errors identified by the clients and vendor, resolutions of

which were well documented and governed as per the client-vendor maintenance contracts. These failures caused business

process disruptions which were considered critical by the clients. Therefore, we only consider what other software defect

analyses might refer to as “highly serious” or “critical errors”.

3.3.2. Modular Maintenance

To capture the extent of modular maintenance undertaken by a client in a time period we derived

the percentage of total source code in modules that were examined by client teams during maintenance

activities in that time period. This is similar to the code coverage software metric utilized during software

verification that captures the ratio of total software test requirements satisfied by a given verification

procedure (Amman and Offutt 2008).

3.3.3. Architectural Maintenance

To capture the extent of architectural maintenance activities undertaken by a client in a time

period we derived the percentage of interfaces between modules that were examined during the

maintenance period. This measure is similar to the interface coverage software metric utilized during

module integration testing procedures that verify if the interfaces between modules in a given system

communicate correctly (Jin and Offutt 2001).

3.4. Control Factors

In examining the hypothesized relationships between technical debt, maintenance activities, and

enterprise system reliability we consider the following factors that have been identified in the literature as

potential covariates: (1) source code size; (2) volatility; (3) team experience; (4) use of consultants as

intermediaries; (5) product age, (6) number of client sites, (7) transaction volume, (8) logic and data

complexity, and (10) number of prior failures.

3.4.1. Source code size

Source code size has been shown to be an important predictor of project outcomes such as

productivity and quality, indicating the presence of scale economies in software development and

maintenance projects (Banker and Kemerer 1989; Banker and Slaughter 1997). All else being equal

software packages with a larger source code size tend to be more complex and have been reported to be

associated with an increased number of errors (Kemerer 1995; Subramanyam and Krishnan 2003).

Therefore, we include the source code size of the client’s version of the software package as a control

variable in our analysis.

3.4.2. Volatility

Prior software product development research has shown that volatility in environmental

conditions significantly influences the rate of changes in systems, as well as the way those changes are

enacted (Barry et al. 2006). From a vendor’s perspective higher environmental volatility would likely

increase heterogeneity in customer demands (Adner and Levinthal 2001). This increased demand

heterogeneity would prompt a vendor to keep its standard release of functionality relatively minimized

and allow clients to utilize the supplied toolkits to satisfy their unique demands. Thus, from a client

perspective an increase in environmental volatility would tend to lead to an increase in software volatility,

that is, the magnitude and rate of changes enacted to the software system
6
 (Barry et al. 2006). Since

environmental volatility might not equally impact all clients of an enterprise system, it is possible that

clients experience different levels of software volatility. The level of software volatility faced by a client

is known to influence the extent to which the client uses designs that do not violate vendor-prescribed

standards (Barry et al. 2006). At the same time, higher levels of software volatility have also been

associated with lower levels of software quality, and have been identified as a key source of critical

system failures (Banker and Slaughter 2000; Agarwal and Chari 2007). Therefore, it is important to

account for software volatility while examining the effect of technical debt-reducing maintenance

activities on enterprise system reliability. Furthermore, since the software volatility variable accounts for

the magnitude of all system changes, we can be confident that the key independent variables measuring

problematic client-initiated modifications (customizations and API violations) in the empirical models are

appropriately capturing the effects of technical debt accumulated in a client’s enterprise system.

3.4.3. Team experience

Empirical evidence from prior research shows that software teams that are stable and consisting

of more experienced members in their respective roles perform better, all else being equal (Boh et al.

2007; Huckman et al. 2009). In particular, generational experience, that is, experience with multiple

releases of the product over its lifecycle, has been associated with higher software productivity and

quality (MacCormack et al. 2001). Furthermore, more experienced software teams have been found to be

able to handle software volatility in a superior way by developing mature software processes that suit

their environmental context (Harter et al. 2000; Barry et al. 2006). Thus, we anticipate that, all else being

equal, client software teams with higher levels of experience will be associated with fewer enterprise

system failures.

3.4.4. Use of consultants as intermediaries

It is a common practice for clients to use external consultants to implement and maintain their

enterprise systems (Akkermans and van Helden 2002; Sarker and Lee 2003; Ramasubbu et al. 2008).

Such external consultants, typically from firms that offer system integration services, play an

intermediary role between the client software teams and the system vendor. The effects of using external

consultants for enterprise system projects have been reported as mixed in the literature (Gable 1996). On

one hand, external consultants have been noted as being able to bring specialized design knowledge that

helps software teams in their problem solving activities (Nah et al. 2001; Akkermans and van Helden

2002). On the other hand, conflicts between client teams and external consultants in their problem

solving approach and project priorities, and coordination challenges between these parties have been

6
 We calculated client and vendor software volatility variables separately by taking into account client-initiated and vendor-

initiated changes respectively. However, the two variables were highly correlated (p<0.001 level) so we combined them into a

single volatility variable to measure the total software volatility of a client’s enterprise system.

identified as critical factors in impacting enterprise system failure rates (Holland and Light 1999; Finney

and Corbett 2007). Since the presence of external consultants could potentially alter project dynamics

and the flow of knowledge between the vendor and client teams, we control for this in our empirical

models (Sarker and Lee 2003; Ko et al. 2005).

3.4.5. Product age

It has been documented that entropy in software products tends to increase with system age,

causing an increase in system failure rates (MacCormack et al. 2006; Eick et al. 2001). To control for the

overall effects of product aging, we include the time in months since the enterprise system was installed

and became operational at a client system in our regression models.

3.4.6. Number of client sites

Firms that operate in multiple locations have been documented as partitioning their enterprise

implementations across these sites (Davenport 1998; Umble et al. 2003). Case studies of enterprise

system operations have noted differences in software maintenance practices between multi-site enterprise

system operations and single-site operations, including the way systems are configured and the manner in

which resources are allocated to software teams (Holland and Light 1999; Markus et al. 2000). Also,

multi-site enterprise system operations have been reported to be complex and more prone to failures than

single-site implementations (Finney and Corbett 2007). To account for these potential effects we include

the number of client sites as a control variable in our models.

3.4.7. Transaction volume

The extent of customizations and maintenance of enterprise systems undertaken by clients and the

eventual performance of these systems might be influenced by the extent to which clients use these

systems (Devaraj and Kohli 2003). To account for the possible correlations between systems usage and

maintenance, and the variance in system usage levels across the different clients, we included transaction

volume as a control variable in our models
7
. A transaction in this context is defined by the vendor as the

execution of program modules that accomplish specific business functionality. For example, “create

invoice”, “reconcile stock levels”, and “create compliance report” are some commonly-used transactions

in the software package. Similar in spirit to Function Points, the transactions metric captures the

customer-focused functionality offered by the software package (Ramasubbu and Kemerer 2014).

Transaction volume refers to the cumulative number of transactions executed in a client’s system in an

observation time period.

7
 We thank an anonymous referee for this suggestion.

3.4.8. Logic and Data complexity

System failures and the effectiveness of client-driven maintenance activities could be impacted by

system module characteristics beyond those captured by source code size
8
. Prior research studies have

shown that logic and data complexity of source code could have a significant impact on the effectiveness

of software maintenance undertaken by clients (Kemerer 1995; Banker and Slaughter 2000). Accordingly,

we include two control variables in our models to account specifically for the logic and data complexity

of the client systems. Logic complexity was measured using McCabe’s cyclomatic complexity metric

(McCabe 1976) and data complexity was measured using the extended McCabe metric that quantifies the

complexity of a module's structure as it relates to data-related variables, capturing the number of

independent paths through data logic of a module (McCabe and Butler 1989).

3.4.9. Prior failures

Systems that have failed in the past might be particularly error prone in the future. To account for

the effects of past failures of client systems, we included the cumulative number of prior system failures

due to client errors and the cumulative number of prior system failures due to vendor errors as additional

control variables in our regression models.

3.4.10. Summary of control factors

The above constructs and their measurement are summarized in Table 2. We found that total

team experience and generational experience of the software team were highly correlated (Pearson’s

correlation of 0.93). Hence, we utilized only the total team experience measure in the empirical models.

Similarly, the three collected measures of software size (KLOC, Function Points, and vendor-defined

transactions) were highly correlated (Pearson’s correlation of 0.87). Therefore, we included only the

KLOC measure of code size in the regression models
9
. Furthermore, we checked if there was a need to

include module-level dummy variables in the empirical models to account for module-level use variations

across the different clients. We found that there were no significant differences across the 48 clients at the

module-level granularity, but that there were significant differences at the level of transactions in terms of

transaction volume and transactions variety (i.e., the number of unique transactions). As might be

expected, transactions variety was highly correlated with code size, and hence we included transaction

volume and code size as controls in the regression models
10

. The summary statistics and correlation

between the variables are presented in Table 3.

8
 We thank the department editor and an anonymous referee for this suggestion.

9
 Regression results did not significantly vary with the choice of any of the alternative software size and team experience

measures.
10

 We thank an anonymous referee for this suggestion.

Table 2. Constructs and Variables in Dataset
Variable Measurement

Technical debt: Client customizations

violating vendor standards (business

logic)

% total source code modifications by a client that altered vendor-provided

business logic and did not adhere to vendor-prescribed standards

Technical debt: Client customizations

violating vendor standards (data schema)

% data schema modifications by a client that altered vendor-provided

master data schema and did not adhere to vendor-prescribed standards

Technical debt: Client customizations that

have API violations

The total number of violations for the non-use of application programming

interfaces where applicable

Modular maintenance
% of source code in a module examined by client teams during the

maintenance period (code coverage)

Architectural maintenance % of interfaces between modules examined during the maintenance period

Volatility
% of the overall source code of the enterprise system that changed during

the maintenance time period

Team experience Average experience of the team in years

Code size
Size of the source code base measured in thousands of Lines Of Code

(KLOC)

Product age Time since system installation (in months)

Consultants use
Indicator variable coded =1 if consultants were ever used as an

intermediary between the vendor and a client

Number of client sites
The number of geographical sites of a client firm in which distinct

implementations of the enterprise system existed

Transaction volume
Total number of transactions completed in a client system during the

observation period

Logic complexity McCabe’s cyclomatic complexity metric

Data complexity McCabe’s extended data complexity metric

Prior client error failures
Total number of system failures due to client errors before the current

observation period

Prior vendor error failures
Total number of system failures due to vendor errors before the current

observation period

4. Empirical Model

The event of interest in our analysis is a failure of enterprise systems at 48 firms in a 10 year

observation period as a measure of their relative reliability. The failure data is right censored because

systems at the 48 client firms evolved at different rates; for example, systems at the different client sites

had different failure rates and maintenance schedules, and were eventually migrated or retired in different

ways at different time periods
11

. Typically, such failures in censored data have been examined using time-

to-event analysis through Cox’s proportional hazard models (Ramdas and Randall 2008; Li et al. 2010).

In such time-to-event analysis we would look at the time to failure (t), the risk set, the hazard function

h(t), and the cumulative incidence function (CIF) to assess the factors that contribute to the failure.

However, the standard single event time model is limited in its ability to analyze COTS-based enterprise

software system failures because the failure of such systems could be caused by two types of events,

namely, (1) failures due to client errors, and (2) failures due to vendor errors. In other words, client errors

and vendor errors compete for system failure. Thus, the standard survival analysis model needs to be

extended for this competing risks scenario.

11

 An overview of the censored dataset structure and a walkthrough example from the dataset are presented in §A2

and §A3 of the online Appendix for the interested reader.

Table 3. Summary Statistics and Correlations
Variable

Mean Std. Dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Customization
business logic (%)

1 56.43 25.91 1.00

Customization data

schema (%)
2 53.29 24.2 0.43 1.00

API violation (#) 3 43.39 24.02 0.25 0.32 1.00

Module

maintenance (%)
4 34.77 47.35 0.23 0.16 -0.13 1.00

Architecture
maintenance (%)

5 32.97 47.07 0.11 0.21 0.17 -0.15 1.00

Volatility (%) 6 56.87 22.83 0.07 0.02 0.05 0.02 0.05 1.00

Total team

experience (yrs.)
7 9.70 2.16 -0.33 -0.32 -0.31 0.06 0.10 -0.26 1.00

Code size (KLOC) 8 866.11 259.33 0.27 0.35 0.34 -0.09 -0.06 0.35 -0.29 1.00

Product Age

(months.)
9 55.85 33.45 0.31 0.23 0.28 -0.09 -0.07 0.25 -0.19 0.24 1.00

Consultants (0/1) 10 0.33 0.48 0.29 0.28 0.21 -0.23 -0.09 0.14 -0.38 0.01 0.42 1.00

Client sites (#) 11 2.73 1.14 0.11 0.06 0.04 0.15 -0.02 0.19 0.01 0.06 0.11 0.34 1.00

Transaction volume

(# 1000s)
12 62.14 20.53 0.33 0.27 0.31 0.23 0.24 0.16 0.42 0.15 0.11 0.29 0.17 1.00

Logic complexity
(#)

13 11.35 5.41 0.42 0.32 0.31 0.22 0.31 0.28 0.27 0.33 0.19 0.07 0.31 0.18 1.00

Data complexity (#) 14 6.71 4.32 0.13 0.53 0.25 0.31 0.23 0.30 0.10 0.13 0.57 0.03 0.16 0.22 0.26 1.00

Prior client error

failures (#)
15 5.07 2.13 0.29 0.34 0.18 0.21 0.27 0.23 -0.18 0.12 0.26 -0.06 0.12 0.19 0.36 0.31 1.00

Prior vendor error

failures (#)
16 4.29 2.35 0.26 0.31 0.18 0.18 0.17 0.23 -0.21 0.32 0.28 -0.04 0.15 0.25 0.26 0.36 0.66 1.00

 Note: For sample size n=3641, correlation coefficients > .03 or < -.03 are statistically significant at p < 0.05

One way to model the competing risks situation is to use separate cause-specific hazards to

represent the enterprise system failure rate from vendor errors and client errors, each following a Cox

proportional hazard model (Cox 1972). However, since an analysis of a cumulative incidence of system

failures is a function of both of the cause-specific hazards (client errors and vendor errors), in such an

approach it would not be possible to directly evaluate the effects of individual covariates, such as code

size, on the cumulative incidence of system failures. To overcome this limitation Fine and Gray (1999)

proposed a semiparametric approach to directly model the cumulative incidence function of competing

risks using a subdistribution hazard function, which can be intuitively thought of as the hazard for a

system that fails from a specific cause or does not, and in the latter case has an indefinite survival time

from the specific cause. The Fine-Gray model takes into account competing events and does not make

assumptions about their independence or censoring distribution. It facilitates testing for covariate effects

on subdistribution hazards, and issues pertaining to model selection and efficient regression predictions

could be easily addressed. Therefore, in line with the recommended best practice, in addition to the cause-

specific hazard analysis (Cox model), we also use the Fine-Gray model to empirically assess the system

failures in our data (Pintilie 2007; Lau et al. 2009).

Formally, each system in our data is associated with a tuple (T, D), where T is the time-to-failure

and D is the type of event that captures the possible causes (k=1, 2), namely, client error-related failure

(k=1) and vendor error-related failure (k=2). The cause-specific hazard function for the competing risks is

the hazard of failing from a given cause in the presence of the other competing event:

hk(t) = lim
∆𝑡→0

{
𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑘|𝑇 ≥ 𝑡)

∆𝑡
} with D = 1, 2

The regression model on the cause-specific hazards (Cox model) with the inclusion of covariates

represented by the vector Z is given as hk(t; Z) = h0k(t) 𝑒
𝛽𝑍. The total hazard can be calculated as the sum

of all k hazards, and the survival probability for the k
th
 risk, Sk(t; Z), is interpreted as the survival

probability for the k
th
 risk if all other risks were hypothetically removed. The cause-specific coefficient

estimates for the covariates obtained from this regression model can be interpreted in the same way as

hazard ratios in the absence of competing risks. However, as mentioned above, a limitation is that the

covariate effects do not pertain to the cumulative incidence of system failures. The Fine-Gray model

specification below overcomes this limitation.

In the Fine-Gray regression model the hazard associated with the Cumulative Incidence Function

(CIF) is defined as Ik(t;Z), which captures the covariate effects directly on the CIF through the

subdistribution hazard function ℎ𝑘
∗ (t;Z). This subdistribution hazard is the probability of system failure

due to a cause given that the system has survived up to time t without any failure, or has had a failure due

to a competing cause prior to time t. This means that while analyzing a specific event of interest, the

model does not censure failures that happen due to competing causes.

Ik(t;Z) = 1 − 𝑒𝑥𝑝⁡{−∫ ℎ𝑘
∗ ⁡(𝑢, 𝑍)𝑑𝑢}

𝑡

0

ℎ𝑘
∗ (t;Z) = ℎ0𝑘⁡

∗ (𝑡)⁡𝑒𝛽𝑍

ℎ𝑘
∗ (t;Z) = 𝑙𝑖𝑚

∆𝑡→0
{
𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑘|𝑇 ≥ 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐷 ≠ 𝑘)

∆𝑡
}

Since ℎ𝑘
∗ (t;Z) is no longer the cause-specific hazard in the Fine-Gray model, the CIF for cause k

depends not only on the hazard of a specific k, but also on the hazard for the other possible causes. Unlike

the Cox model, the regression estimates of covariates from the Fine-Gray model directly relate to the CIF.

The regression model specification with the entire list of covariates for our model is given as:

⁡⁡⁡⁡⁡⁡⁡⁡ℎ𝑘
∗ (𝑡; 𝑍) = ℎ0𝑘⁡

∗ (𝑡) ∗ exp{⁡𝛽1⁡(𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠⁡𝑙𝑜𝑔𝑖𝑐)
+ 𝛽2⁡(𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑑𝑎𝑡𝑎⁡𝑠𝑐ℎ𝑒𝑚𝑎) + ⁡𝛽3⁡(𝐴𝑃𝐼⁡𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
+⁡𝛽4⁡(𝑚𝑜𝑑𝑢𝑙𝑎𝑟⁡𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)+⁡𝛽5⁡(𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑎𝑙⁡𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)
+⁡𝛽6⁡(𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦) +⁡𝛽7⁡(𝑡𝑒𝑎𝑚⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) +⁡𝛽8⁡(𝑐𝑜𝑑𝑒⁡𝑠𝑖𝑧𝑒)
+⁡⁡𝛽9⁡(𝑝𝑟𝑜𝑑𝑢𝑐𝑡⁡𝑎𝑔𝑒) + 𝛽10(𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑠⁡𝑢𝑠𝑒)
+⁡𝛽11⁡(𝑐𝑙𝑖𝑒𝑛𝑡⁡𝑠𝑖𝑡𝑒𝑠)+⁡𝛽12⁡(𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠⁡𝑣𝑜𝑙𝑢𝑚𝑒) +⁡𝛽13⁡(𝑙𝑜𝑔𝑖𝑐⁡𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)
+⁡𝛽14⁡(𝑑𝑎𝑡𝑎⁡𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) +⁡𝛽15⁡(𝑝𝑟𝑖𝑜𝑟⁡𝑐𝑙𝑖𝑒𝑛𝑡⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)
+⁡𝛽16⁡(𝑝𝑟𝑖𝑜𝑟⁡𝑣𝑒𝑛𝑑𝑜𝑟⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)}

 While estimating the above competing risks regression model we explicitly consider the potential

dependence across the different versions of a system at a client site. We treat the different versions of a

system at a client site as siblings in a family cluster that might be correlated due to unobserved shared

factors. We utilize a recent extension of the Fine-Gray proportional hazard model to derive the estimators

of the regression parameters specific to clustered data (Zhou et al. 2012). Furthermore, as an alternate

approach for comparison, we also estimate the model by treating failures of a system at a client’s site as

ordered and repeated events using variance-correction and frailty models that specifically correct standard

error of regression estimates for non-independence caused by repeated events (Box-Steffensmeier and

Zorn 2002)
12

.

5. Results

Tables 4 and 5 present the regression results obtained using the Fine-Gray model for clustered

data and the different Cox models with adjusted standard errors using variance correction and frailty

approaches. Estimates of models 1 and 2 presented in Table 4 are derived using the competing risks

estimation approach, treating the 48 client firms as individual clusters. Models 3 and 4 in Table 5 are

estimated using the latent survivor time approach, which involves estimating two different models for the

client and vendor failures by resetting the survival data for each of these ways of system failures. In

models 5 and 6 in Table 5, the estimates from the standard Cox model are adjusted for variance-correction

to account for repeated events. These estimates were derived using the Prentice-Williams-Peterson (PWP)

conditional risk-sets method estimated in gap time (Prentice et al. 1981). In the PWP models, an

individual observation is not at risk for a later event until all prior events have occurred. Accordingly, the

sample size for the estimation varies from the Fine-Gray and other Cox models because the risk set at

time t for the k
th
 occurrence of a repeated event is limited to those observations that have already

experienced k-1 events of that type. Models 7 and 8 in Table 5 are estimated using a frailty approach,

which treats repeated events in a cluster as a special case of unit-level heterogeneity, specifically as

random draws from a gamma distribution (Box-Steffensmeier et al. 2007).

In interpreting the hazard ratio estimates of the various models note that higher system reliability

is associated with a lower hazard ratio (coefficient < 1) and lower system reliability is associated with a

higher hazard ratio (coefficient > 1) since the actual measurements are of system failures, i.e., the lack of

reliability. Referring to Tables 4 and 5 we see that the chi-square statistics for all models are significant at

p < 0.01, indicating strong statistical support for the overall model selection. Tests of the proportional

12

 We thank an anonymous reviewer for suggesting this approach. We note that the estimation procedures for ordered, recurrent

events under a competing risk model are complex and not readily available (Taylor and Pena 2013; Dauxois and Sencey 2009).

The use of the Fine-Gray model for clustered data is appropriate for our data because membership in each of the clusters is

dependent on the different versions of the software implemented at each client site over time (subject to censoring). For an

individual member within each of the 48 clusters (i.e., a specific version of a client software), we do not observe repeated failures

in the data.

hazard assumption of the regression models verified that the hazard ratios were constant over time, and

therefore, stratification, or time-varying interaction terms, were not needed. We verified that the results

were not influenced by outliers in the data by examining the distribution of martingale and deviance

residuals of the regressions (Rogers 1994). Coefficient estimates from the various Cox models and the

Fine-Gray models are in the same direction, increasing the confidence of our empirical results. Since the

Fine-Gray model estimates directly relate to CIF, for ease of exposition we utilize the Table 4 Fine-Gray

model estimates to explain the hypothesis-testing results.

Table 4. Clustered Data Fine-Gray Model Regression Estimates

 (1) (2)

 Event of interest: System failure due to

client errors

Competing event: System failure due

to vendor errors

Event of interest: System failure due to

vendor errors

Competing event: System failure due to

client errors

Customization-business

logic
𝛽1⁡ 1.14*** 1.62***

Customization-data schema 𝛽2 1.12*** 1.41***

API Violations 𝛽3 1.23*** 1.98***

Modular maintenance 𝛽4⁡ 0.22*** 3.98***

Architectural maintenance 𝛽5⁡ 0.47** 2.17***

Volatility 𝛽6⁡ 1.02*** 1.08***

Team experience 𝛽7⁡ 0.62*** 0.88***

Code size 𝛽8 1.42*** 1.45***

Product age 𝛽9 1.05*** 1.07***

Consultants use 𝛽10 0.96* 0.99*

Client sites 𝛽11 1.04 1.01

Transaction volume 𝛽12 1.01* 1.08*

Logic complexity 𝛽13 1.14*** 1.15***

Data complexity 𝛽14 1.09** 1.11***

Prior client error failures 𝛽15 1.05*** 1.04*

Prior vendor error failures 𝛽16 1.04*** 2.19***

Model Chi-squared statistic 450.98*** 448.35***

Variance explained (Pseudo

R-squared)
 0.38 0.28

Observations 3641 3641

Note: ***, **,* Hazard Ratios significant at p < 0.01, p < 0.05, p < 0.1 respectively

Table 5. Regression Estimates for Cox Models with Adjusted Standard Errors

Cox latent failure models with

robust standard errors

PWP repeated failures gap time

models

Cox frailty models with robust

standard errors

 (3) (4) (5) (6) (7) (8)

System

failure due to

client errors

System

failure due to

vendor errors

System

failure due to

client errors

System

failure due to

vendor errors

System

failure due to

client errors

System

failure due to

vendor errors

Customization-

business logic
𝛽1⁡ 1.21*** 1.78*** 1.46*** 1.63*** 1.11*** 1.98***

Customization-

data schema
𝛽2 1.19*** 1.19*** 1.24*** 1.52*** 1.05*** 1.50***

API Violations 𝛽3 1.32*** 1.95*** 1.14*** 1.62*** 1.02*** 1.31***

Modular

maintenance
𝛽4⁡ 0.19*** 4.11*** 0.21*** 2.97*** 0.19*** 4.53***

Architectural

maintenance
𝛽5⁡ 0.38*** 2.63*** 0.42*** 1.36*** 0.39*** 2.38***

Volatility 𝛽6⁡ 1.05*** 1.13*** 1.17*** 1.07*** 1.10*** 1.06***

Team experience 𝛽7⁡ 0.51*** 0.85*** 0.48*** 0.89*** 0.43*** 0.80**

Code size 𝛽8 1.51*** 1.29*** 1.30*** 1.05*** 1.49*** 1.06**

Product age 𝛽9 1.02** 1.08*** 1.01* 1.11** 1.01** 1.07**

Consultants use 𝛽10 0.96* 0.99* 0.95** 0.97** 0.84 0.97*

Client sites 𝛽11 1.04 1.07 1.03* 1.09 1.02* 1.00

Transaction

volume
𝛽12 1.01 1.03 1.03 1.02** 1.01* 1.01*

Logic complexity 𝛽13 1.13*** 1.12*** 1.16*** 1.12*** 1.18*** 1.21***

Data complexity 𝛽14 1.03** 1.16*** 1.23*** 1.30*** 1.03** 1.07**

Prior client error

failures
𝛽15 1.06** 1.03* 1.03** 1.02* 1.03** 1.06**

Prior vendor error

failures
𝛽16 1.07*** 2.66*** 1.14*** 1.72** 1.04** 2.73**

Model Chi-

squared statistic
 490.27*** 469.55*** 78.91*** 62.56*** 219.54*** 198.81***

Frailty parameter 0.25*** 0.31***

Variance

explained (Pseudo

R-squared)
 38% 28% 31% 29% 37% 26%

Observations 3641 3641 386 382 3641 3641

Note: ***, **,* Hazard Ratios significant at p < 0.01, p < 0.05, p < 0.1 respectively

Referring to Table 4 we see that a 1% increase in non-standard customization of business logic

increases the probability of a system failure due to client errors by 14% (Column 1, β1 = 1.14; 14% above

the baseline hazard of 1). Similarly, data schema customizations increase the chance of client-error

system failures by 12%. Also, we see that a 1% increase in non-standard customizations significantly

increases the probability of a system failure due to vendor errors (Column 2, β1= 1.62 for business logic

and β2= 1.41 for data schema). Similarly, a 1% increase in API violations increases the chance of a

system failure due to client errors by 23% (Column 3, β3 = 1.23), and also increases the chance of a

system failure due to vendor errors by about two times (Column 4, β3 = 1.98). Taken together, these

results show strong support for Hypotheses 1a and 1b that predicted technical debt to increase the

probability of a system failure due to client and vendor errors respectively. This result supports our

postulation that technical debt results in poor reliability of systems because the source code modifications

and API violations implemented by clients tend to be error-prone and to accentuate defects present in the

vendor-supplied package by creating conflicts between client and vendor maintenance activities.

Hypothesis 2a predicted that modular maintenance would reduce the chance of a system failure

due to client errors. Referring to Table 4, Column 1, we see that modular maintenance is associated with a

78% reduction in the probability of a system failure due to client errors (β4 = 0.22, 78% lower than

baseline hazard ratio of 1), lending strong support for Hypotheses 2a. We also find full support for

Hypothesis 3a, which predicted modular maintenance to be associated with a higher probability of a

system failure due to vendor errors. Our results show that a 1% increase in code coverage during modular

maintenance to reduce technical debt increases the probability of a system failure due to vendor errors by

about four times (Table 4, Column 2: β4 = 3.98).

Our results indicate that architectural maintenance reduces the chance of a system failure due to

client errors by about 53% (Table 4, Column 1: β5 = 0.47, 53% lower than baseline hazard ratio of 1),

which supports Hypothesis 2b. Also, as predicted by Hypothesis 3b, architectural maintenance increases

the probability of a system failure due to vendor errors by about two times (Table 4, Column 2: β5 =

2.17). These results are consistent with our postulation that knowledge asymmetries between the clients

and vendor of a COTS-based enterprise system may lead to conflicts between the maintenance activities

performed by the clients and the vendor, leading to poor system reliability.

Hypothesis 2c posited that modular maintenance would be more effective in reducing the

probability of a system failure due to client errors than would architectural maintenance. The predicted

hazard ratios of modular maintenance and architectural maintenance variables were significantly different

(Table 4 Column 1: β4 = 0.22 and β5 = 0.47; test Chi-squared = 6.65, p < 0.01). We see that modular

maintenance is 25% more effective in reducing the chance of a system failure due to client errors than is

architectural maintenance. Thus, Hypothesis 2c is fully supported.

Finally, Hypothesis 3c predicted that modular maintenance would cause more conflicts with the

vendor platform than would architectural maintenance, and would be associated with a higher probability

of a system failure due to vendor errors. Referring to Table 4 Column 2, we see that the hazard ratio for

modular maintenance (β4 = 3.98) is about 83% higher than that of architectural maintenance (β5 = 2.17).

These predicted hazard ratios were statistically significant, lending support to Hypothesis 5 (test Chi-

squared = 11.40, p < 0.01). This result shows that the chance of a system failure due to vendor errors

increases by about two times for every percentage increase in the number of interfaces between modules

that were altered during architectural maintenance. However, when technical debt reduction is focused

only at the module-level without rectifying the interfaces between modules, every percentage of source

code modified within modules is associated with a four-fold increase in the chance of a system failure due

to vendor errors.

Figures 3 and 4 visually present the CIF for system failure due to client and vendor errors

respectively, on a scale from 0 to 1. As the graphs show, modular maintenance is more effective in

reducing the CIF of system failure due to client errors, but is associated with an increased CIF of system

failure due to vendor errors. In contrast, architectural maintenance is less effective in reducing the CIF of

system failure due to client errors, but is associated with a lower level of CIF of system failure due to

vendor errors. This illustrates the tradeoffs involved in performing software maintenance of enterprise

systems in the presence of technical debt.

Figure 3. Cumulative Incidence of System Failure due to Client Errors

0

.0
5

.1
.1

5
.2

C
u

m
u
la

ti
v
e

 I
n
c
id

e
n
c
e

0 1000 2000 3000 4000 5000
Time (hours)

Modular Maintenance Architectural Maintenance

 Figure 4. Cumulative Incidence of System Failure due to Vendor Errors

Results for the control variables in the regression models are in the expected directions. We find

that volatility slightly increased the chance of a system failure due to both client errors (Table 4, Column

1: β6 = 1.02) and vendor errors (Table 4, Column 2: β6 = 1.08). More experienced teams were associated

with a reduction in the probability of a system failure due to client errors by 38% (Table 4, Column 1: β7

= 0.62) and in the probability of a system failure due to vendor errors by about 12% (Table 4, Column 2:

β7 = 0.88). As expected, code size had a significant detrimental effect on system reliability. Our results

show that for every KLOC increase in code size, the probability of a system failure due to client errors

increased by 42% (Table 4, Column 1: β8 = 1.42) and the chance of a system failure due to vendor errors

increased by 45% (Table 4, Column 2: β8 = 1.45). The probability of a system failure due to client errors

increased with product age (Table 4, Column 1: β9 = 1.05) and aging systems were also prone to a higher

incidence of system failures due to vendor errors (Table 4, Column 2: β9 = 1.07). The overall effect of the

use of consultants was to help reduce the chance of a system failure to a small extent (Table 4, Column 1:

β10 = 0.96, Column 2: β10 = 0.99). The number of client sites at which the enterprise system was operated

did not have a statistically significant effect on the probability of a system failure. The estimates for the

transaction volume variable show that heavier usage is associated with a marginal increase in both client-

error and vendor-error failures (Table 4, Column 1: β12 = 1.01, Column 2: β12 = 1.08). As expected, we

also see a higher probability of system failures associated with logic and data complexity as well as with

0
.2

.4
.6

.8

C
u

m
u
la

ti
v
e

 I
n
c
id

e
n
c
e

0 1000 2000 3000 4000 5000
Time (hours)

Modular Maintenance Architectural Maintenance

the number of previous system failures. Prior vendor failures had a significant and large impact on future

system failures due to vendor errors (Table 4, Column 2: β16 = 2.19), which indicates that vendor errors

might have a long-term effect on impacting reliability throughout a system’s lifecycle.

 To test the potential mediation effect
13

 of technical debt in relating client-level modular

maintenance and architectural maintenance with client-error related system failures, we used a relatively

newly developed method for mediation analysis in survival data setting based on the Aalen additive

hazard model (Lange and Hansen 2011). The schematic representation of the mediation analysis is shown

in Figure 5. αm represents the change in technical debt as a result of one unit change in modular

maintenance as modeled by a linear least squares regression. λc and λm represent the regression

coefficients for Aalen’s additive hazard model when the survival status is regressed on maintenance and

technical debt respectively.

Figure 5. Mediation Analysis

The mediation analysis involved two steps. First, we estimated the effects of maintenance on the

mediator (technical debt) by a linear regression model. Second, we estimated the effects of both

maintenance and technical debt on system failure due to client errors by fitting an additive hazard model

adjusted for other covariates. The total effects (TE) on system failure were given by the sum of direct

effects (DE) and the indirect effects (IE). The indirect effect through technical debt was given by the

product of the parameter estimates for the regression of technical debt on modular maintenance and the

parameter estimate of the effect of the technical debt on system failures from the additive hazard models.

The mediated proportion is IE/TE. The schematic representation of the mediation analysis is shown in

Figure 3. αm represents the change in technical debt as a result of one unit change in modular maintenance

as modeled by a linear least squares regression. λc and λm represent the regression coefficients for Aalen’s

additive hazard model when the survival status is regressed on maintenance and technical debt

respectively. The results of the mediation analysis are presented in Tables 6 and 7. The results show that

there is a significant mediation effect due to technical debt. We find that about 35% of the effect of

13

 Mediation analysis helps to test the structural relationship between client-level maintenance activities, technical

debt, and system failures due to client errors, and complements our reasoning associated with hypotheses 2a and 2b.

We thank an anonymous reviewer for suggesting this analysis.

λc

λm αm
Modular Maintenance

Architectural Maintenance

Technical Debt
System failure due to

client errors

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙⁡𝑑𝑒𝑏𝑡 =⁡∝0+⁡∝𝑚 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 + 𝜀
∝ (𝑡) = ⁡𝛽0 +⁡λ𝑐𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 + λ𝑚𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙⁡𝑑𝑒𝑏𝑡
∝ (𝑡) = ⁡𝛽0 +⁡λ𝑚 ∝0+ (∝𝑚 λ𝑚 +⁡λ𝑐)⁡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙⁡𝑑𝑒𝑏𝑡

modular maintenance on system failure reduction is mediated through technical debt reduction. Similarly,

20% of the effect of architectural maintenance on system failure reduction is mediated through technical

debt reduction. These results show that technical debt in an enterprise system accumulated over a period

of time by a client could be reduced to a certain degree by targeted client-level maintenance activities.

Furthermore, it confirms that modular maintenance undertaken by a client is more effective than

architectural maintenance in reducing both the accumulated technical debt and system failures arising

from the technical debt.

Table 6: Effect of Maintenance on Technical Debt

 Customization-

business logic

Customization-

data schema

API Violations

Modular maintenance -0.81

 -0.38

 -0.51

Architectural

maintenance
-0.19

 -0.25

 -0.18

Note: Estimates are adjusted for volatility, team experience, code size, logic complexity, data

complexity, product age, client sites, consultants use, prior failures, and transaction

volume; *** significant at p < 0.01

Table 7: Mediation Effects through Technical Debt Reduction

 DE (λ𝑐) IE

(∝𝑚 λ𝑚)
TE

(λ𝑐 +
(∝𝑚 λ𝑚))

IE/TE

Customization-business logic

Modular maintenance -1.53

 -0.87

 -2.40

 0.36

Architectural maintenance -0.92

 -0.23

 -1.15

 0.20

Customization-data schema

Modular maintenance -1.49

 -0.84

 -2.33

 0.36

Architectural maintenance -0.90

 -0.19

 -1.09

 0.17

API Violations

Modular maintenance -1.61

 -0.87

 -2.48

 0.35

Architectural maintenance -0.99

 -0.25

 -1.24

 0.20

Note: Estimates are adjusted for volatility, team experience, code size, logic complexity, data

complexity, product age, client sites, consultants use, prior failures, and transaction

volume; *** significant at p < 0.01

6. Discussion

In this section we first use our empirical results to quantitatively evaluate a typical client’s business

risk exposure due to technical debt accumulation in their enterprise system. Then, we illustrate how

managers could perform cost-benefit analysis of maintenance projects that aim to reduce the business risk

exposure arising from technical debt. Following this we present the best practices reported to us during

our field research to manage technical debt. Finally, we conclude by discussing implications for research.

6.1. Managing Technical Debt in Enterprise Systems

6.1.1. Managerial Evaluation of Business Risk Exposure from Technical Debt

The results presented in Section 5 show that technical debt is associated with a significant

increased probability of enterprise system failures. We next utilize the estimated probabilities of system

failures from our empirical models to illustrate how software managers at client sites can evaluate their

business risk exposures due to technical debt and derive risk management policies accordingly.

Risk exposure is conventionally defined as the potential loss in value due to an unexpected event

(Boehm 1991; Lyytinen et al. 1998). The unexpected event of focus in this study is a system failure, and

the risk exposure of a system failure is derived as:

 𝑅𝑖𝑠𝑘⁡𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦⁡𝑜𝑓⁡𝑠𝑦𝑠𝑡𝑒𝑚⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ∗ ⁡𝐿𝑜𝑠𝑠⁡𝑑𝑢𝑒⁡𝑡𝑜⁡𝑠𝑦𝑠𝑡𝑒𝑚⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒

We collected data on the financial consequences of business process disruptions due to system failures

through follow-up field interviews with the account managers at the client firms
14

. We collected data

pertaining to two of the most commonly used business processes supported by the enterprise software, the

warehouse management business process and the accounts payable business process, and derived the risk

exposures due to hazards in these two example processes.

Table 8 presents the results of this analysis. Column (1) in Table 8 lists the relevant modules of

the enterprise system. The corresponding list of key hazards in the warehouse management and accounts

payable business processes at the client firms is shown in Column (2). The extent of technical debt

accumulated in the modules, measured in terms of API violations and the business logic and data schema

customizations that violated vendor-provided programming and design standards, is listed in Column (3).

Applying our empirical model and the cumulative incidence function estimates from Section 5 we derived

the estimated probabilities of system failures due to software errors in the modules and present them in

Column (4) of Table 8. Multiplying these estimated probabilities of system failures with the average

financial loss due to the business process hazards (Table 8, Column (5)) gives the business risk exposure

per system failure (Column (6)). The sum of these values for all modules yields a total estimated business

risk exposure value of about $0.9 million per firm per year due to technical debt for a typical client in our

dataset.

Technical debt build-up in enterprise systems is often not readily visible to business managers

(Kruchten et al. 2012; Tom et al. 2013). The derivation of estimated business risk exposure, as illustrated

above, could highlight the potential impact of technical debt and help managers to assess whether the

levels of technical debt accumulated in their enterprise systems are appropriate. If the business risk

14

 As shown in Figure 2 in §3 we collected financial, project management, and personnel-related data for each of the system

failures at client sites to derive the business risk exposures due to technical debt accumulation in the client systems.

exposure stemming from technical debt is deemed inappropriate, then managers can plan targeted

maintenance activities that reduce technical debt in the system and thus help reduce risk exposure in the

key business processes supported by the system. We discuss the evaluation of such enterprise system

maintenance decisions in the next section.

Table 8. Evaluating Business Risk Exposure due to Technical Debt
(1) (2) (3) (4) (5) (6)

Module
Hazard in

business process

Technical debt Estimated

probabilit

y of
system

failure

Average

business

process
hazard loss

(thousand $)

Business
risk

exposure
(thousand $)

Customizations:
business logic

Customizations:
data schema

API
Violations

Invoice

management

Customer
invoices not

generated

24.20 6.05 12.00 0.44 717.16 315.55

Payments

management

Incorrect billing

amounts
collected

11.40 2.85 4.00 0.21 179.58 37.71

Customer order
management

Customer orders

delivered to

wrong locations

3.50 0.88 0.00 0.04 1253.84 50.15

Customer

services

Customer-
reported issues

not recorded

7.80 1.95 2.00 0.11 46.64 5.13

Managerial

reports

Regulatory

reports not filed
31.90 7.98 13.00 0.54 744.91 402.25

Warehouse
management

Wrong stock
levels held

6.70 1.68 2.00 0.13 1494.06 194.23

Estimated typical client total annual business risk exposure due to technical debt ≈ $ 924,385

6.1.2. Managerial Evaluation of Enterprise System Maintenance Decisions

Having demonstrated how managers could utilize the models developed in this study to assess

business risk exposures due to system failures, we extend our discussion to illustrate how our results

could be utilized to evaluate system maintenance decisions.

Let us consider a scenario where a client firm plans to reduce the estimated $0.9 million business

risk exposure discussed above and proposes to conduct modular and architectural maintenance. We

illustrate how our empirical model and results could be used to perform a cost benefit analysis to evaluate

the above proposal. Following our discussion of competing risks, it is important to note that any project

benefits, such as a reduction in business risks of technical debt, need to be adjusted for competing project

risks, for example, the unexpected increase in system failures due to vendor errors.

We derived nine hypothetical maintenance project scenarios by choosing values for client

maintenance investments at the mean level, and at approximately one standard deviation above and below

the mean level for the two types of maintenance, modular and architectural. These nine scenarios are

shown in Table 9. The resulting code coverage and architectural interfaces examined in the maintenance

projects covered a range from 0% to 70%.

Table 9. Nine Hypothetical Maintenance Project Scenarios (S1-S9)

Architectural maintenance

Below average Average Above average

Modular
maintenance

Below
average

S1: (0%, 0%) S2: (0%, 30%) S3: (0%, 70%)

Average S4: (30%, 0%) S5: (30%, 30%) S6: (30%, 70%)

Above
average

S7: (70%, 0%) S8: (70%, 30%) S9: (70%, 70%)

For each of the business process hazards in Column (2) of Table 8 we analyze the nine

hypothetical scenarios (Table 9) for the proposed maintenance projects that were within the ranges of

activity at the client firms in our dataset. For each of these scenarios we collected actual maintenance

costs from projects conducted at our client sites. As described in §6.1.1 we derived risk exposure values

for each business process hazard under the nine maintenance scenarios. For each of the scenarios we

calculated the reduction in risk exposure levels by utilizing the regression estimates of the hazard of

system failures due to client errors (Table 4). The modular and architectural maintenance activities in the

proposed project would also introduce new hazards arising from conflicts with the errors in the vendor

supplied platform. We estimated the increase in business risk exposure due to this new hazard by

utilizing the regression results presented in Table 4, and then calculated the overall return on investments

for each of the maintenance scenarios.

The pattern of return on investments for different maintenance scenarios is summarized in Figure

6
15

. As can be seen from Figure 6, not all maintenance scenarios yield net positive benefits. The estimated

return on investment of Scenario 4 (30% modular coverage and no architectural coverage) is the highest

at 95.45%. The project with the highest level of maintenance investments, Scenario 9, which involves

70% modular coverage and 70% architectural coverage, actually results in a net loss with a return of

investments of -142.58%, according to this analysis.

15

Detailed module-level cost-benefit estimates are presented in Table A1 of the online Appendix (§A4). The return on

investments patterns are consistent whether we use cumulative project values or average the values over the six modules

considered in the illustration.

Figure 6: Estimated Return on Investments from Maintenance Projects

Note: These Figure 6 results are intended only to show the estimated impact of technical debt

on maintenance costs and risk exposure under various scenarios. These results should

not be interpreted as the effectiveness or ineffectiveness of maintenance policies at the

client sites. This analysis does not include potential opportunity costs, business benefits

other than maintenance cost savings, and other competitive advantages that a client site

might accrue based on the firm’s specific technical debt-handling strategy.

These results illustrate our belief that technical debt reduction in enterprise systems is not

straightforward because of the interdependencies between client-related and vendor-related tasks and the

knowledge asymmetry between the clients and the vendor. Therefore, more investments in client-level

maintenance activities may not necessarily translate into business benefits. In the presence of technical

debt, higher levels of client maintenance activities are not only expensive, but also have a higher chance

of introducing new hazards due to conflicts with vendor’s maintenance activities, and thereby causing

project losses. On the other hand, projects that aim for targeted and incremental technical debt reduction,

which is synchronized with the vendor’s roadmap for the product lifecycle, could yield benefits by

reducing the business risk exposure of clients. Our empirical models and results, along with a cost-

benefit analysis like the one illustrated above, could help managers to evaluate their portfolio of

maintenance project proposals in a judicious manner and invest appropriately in the most beneficial

portfolios.

6.1.2.1. Industry Best practices

In addition to the statistical analysis this research required an extensive amount of field research

and interactions with technical staff and management at the 48 client sites, as summarized in Figure 2.

Through this more qualitative work we observed two apparent key best practices, both of which

corroborate well with our empirical results. First, client firms who participated more actively in vendor-

initiated activities, such as trade conferences and product roadshows, seemed to be more capable of

identifying use-specific configurations and modifications that could potentially be in conflict with the

future evolution of the product. Such teams had established good networks with specialists from the

vendor firm, which helped reduce their knowledge asymmetry with the vendor. By participating in the

vendor-initiated conferences clients had to reveal their firm-specific practices, which had the risk of

competitive advantage erosion due to imitation by competitors. However, the benefits of participation

may outweigh these perceived risks because they could help reduce the knowledge asymmetry with the

vendor, and thereby avoid conflicts with the vendor’s product evolution and the subsequent system

failures that tend to create significant business losses, as estimated above.

The second best practice we observed involved choosing the appropriate modules of the enterprise

system to customize and modify. It is a common practice for clients of COTS systems to aggressively

modify vendor-supplied modules that are perceived as “weak”, for example, modules that lack

functionality when they are released (Davenport 1998). However, counter-intuitively, client firms who

had the highest levels of system reliability, more often than not, seemed to avoid modifying the weaker

modules supplied by the vendor. This strategy makes sense in light of our empirical results related to

competing risks in the COTS enterprise system context. Over the lifecycle of a COTS enterprise system

product the vendor typically tends to allocate resources to the modules that were perceived as weak

during the initial release and attempts to improve them over the product’s evolution. A client who

engages in aggressive source code modifications early on in an attempt to rectify the vendor-supplied

module weaknesses tends to accumulate technical debt, all else being equal. Even though such client

customizations might yield short-term business benefits, as our results show the accumulated technical

debt has the potential to cause severe system failures later in the system’s lifecycle. Completely

eradicating the accumulated technical debt is challenging, and therefore the business risk exposure values

of these clients increase with time. In contrast, clients who adopt a “wait and watch” strategy benefit from

vendor-initiated improvements in enterprise systems with long lifecycles. Therefore, we recommend

judicious selection of modules for pursuing use-specific modifications and holding back such

customization projects until the vendor’s standard release has reasonably matured.

6.2. Implications for Research

In addition to the above managerial implications we highlight three important implications for

research. First, this study has empirically quantified the negative impact of technical debt on enterprise

system reliability and the presence of competing risks that influence enterprise system failures. Therefore,

in the enterprise systems context, software maintenance decision models need to account for the patterns

of technical debt accumulation and reduction over the lifespan of the systems while deriving optimal

maintenance policies. Furthermore, construction of models that account for costs of software quality need

to be done in a way to accommodate the competing risks that accompany technical debt reduction. The

presence of technical debt often makes software maintenance imperfect, and omitting the new hazards

introduced during a maintenance activity would lead to biased calculations of returns on investments of

software maintenance activities and business risk exposures valuations.

Second, this study has established the presence of interdependencies between vendor and client

tasks in the toolkit approach to enterprise software product development, which significantly influences

the reliability of the systems and consequently the business risk exposure of clients. There is a need for

research that sheds light on client and vendor strategies that could mitigate the effects of this

interdependence, possibly through a reduction of knowledge asymmetry between the vendor and clients.

Furthermore, exploring the co-evolution of the enterprise system variants at client firms and the vendor’s

standard product releases could reveal how the interdependence between client and vendor versions of the

product varies over the lifecycle of the enterprise system, revealing clues as to how the transitions to new

product versions could be effectively managed by clients.

Finally, our examination of the relative effects of modular and architectural maintenance

activities to reduce technical debt revealed a challenging tradeoff. We found that modular maintenance

activities were more effective in reducing system failures due to software errors from client modifications

than architectural maintenance. However, modular maintenance activities increase the probability of

system failures due to residual software errors that are found in the vendor-supplied platform by as much

as two times more than architectural maintenance. Because of this tradeoff, as illustrated in §6,

calculating the benefits of software maintenance investments targeted at reducing technical debt is not

straightforward. Therefore, research studies that focus on deriving maintenance policies and designing

software maintenance project portfolios need to carefully account for the accumulated levels of technical

debt in enterprise systems, as well as the distribution of resources across modular and architectural

maintenance.

Future research could expand the contributions of this study in a number of ways. First,

replicating the study using different COTS products from multiple vendors would help to assess the

degree of generality of the results. Second, and more expansive, would be an investigation of the impact

of technical debt in product platform ecosystems, where distinct product families are based on a single

core software platform (Meyer et al. 1997; Ceccagnoli et al. 2012). The competing risks approach

advocated in this research could be particularly useful in understanding how technical debt in one product

family propagates across the ecosystem in which it is situated. Another research direction would be to

examine how vendors and clients of enterprise systems manage technical debt during periods of

technological transitions (Iansiti 2000). Investigating the circumstances under which technical debt

hastens or hinders transitions to new technological paradigms would help further our understanding of the

diffusion of new innovations in the software product development industry. There is also an opportunity

to expand the cost-benefit analysis of technical debt reduction reported in this paper. For example, future

research could extend the analysis by attempting to specifically account for business opportunity costs

that arise from a technical debt-avoiding maintenance policy as well as fully accounting for possible

heterogeneity in client site-level maintenance policies.
16

 Finally, examining the relationship between the

software process maturity of product development teams and technical debt in their projects could help to

establish important process-related antecedents of technical debt accumulation in enterprise software

products.

7. Summary and Conclusion

This research investigated the reliability of COTS-based enterprise systems, which are critical

business platforms for the operations of modern organizations. We specifically addressed the research

challenges that stem from the interdependencies between the vendor-supplied enterprise system platform

and the customizations done by individual clients through a competing risks analysis approach. By

empirically examining a longitudinal dataset spanning the 10 year lifecycle of a COTS-based enterprise

software system deployed at 48 different client firms, we advanced a method to measure technical debt in

an enterprise system and assess its impact on the reliability of the system. The competing risks approach

we deployed for our empirical analysis enabled us to accurately estimate the impact of technical debt by

accounting for event-specific hazards that impact the reliability of an enterprise software system due to

the specific actions taken by both the vendor and the client firms throughout the evolution of the system.

Moreover, we examined the economic payoff from modular and architectural software maintenance

aimed at reducing the technical debt of an enterprise system, and demonstrated how the results of the

study could aid managerial decision-making related to controlling business risk exposures due to

enterprise system failures.

16

 We thank an anonymous reviewer for this suggestion.

References

Adner, R., and Levinthal, D., 2001. "Demand Heterogeneity and Technology Evolution: Implications for

Product and Process Innovation," Management Science 47(5), pp. 611-628.

Agarwal, M., and Chari, K., 2007. "Software Effort, Quality, and Cycle Time: A Study of CMM Level 5

Projects," IEEE Transactions on Software Engineering 33(3), pp. 145-156.

Akkermans, H., and van Helden, K., 2002. “Vicious and Virtuous Cycles in ERP Implementation: A Case

Study of Interrelations between Critical Success Factors,” European Journal of Information

Systems 11(1), pp. 35-46.

Ammann, P., and Offutt, J., 2008. Introduction to Software Testing. Cambridge University Press: New

York, NY.

Andersen, R., and Morch, A., 2009. "Mutual Development: A Case Study in Customer-Initiated Software

Product Development," Lecture Notes in Computer Science, volume 5435, 2009, pp 31-49.

Austin, R.D., 2001. “The Effects of Time Pressure on Quality in Software Development: An Agency

Model,” Information Systems Research 12(2), pp. 195-207.

Baldwin, C., Hienerth, C., and von Hippel, E., 2006. “How User Innovations Become Commercial

Products: A Theoretical Investigation and Case Study,” Research Policy 35(9), pp. 1291-1313.

Banker, R.D., Datar, S.M., Kemerer, C.F., 1991. “A Model to Evaluate Variables Impacting the

Productivity of Software Maintenance Projects,” Management Science 37(1), 1991, pp. 1-18.

Banker, R.D., Davis, G.B., Slaughter, S.A., 1998. “Software Development Practices, Software

Complexity, and Software Maintenance Performance: A Field Study,” Management Science,

44(4), pp. 433-450.

Banker, R.D. and Kemerer, C.F., 1989. "Scale Economies in New Software Development," IEEE

Transactions on Software Engineering 15(10), pp. 1199-1205.

Banker, R.D. and Slaughter, S.A., 1997. "A Field Study of Scale Economies in Software Maintenance,"

Management Science 43(12), pp 1709-1725.

Banker, R.D., and Slaughter, S.A., 2000. “The Moderating Effects of Structure on Volatility and

Complexity in Software Enhancement,” Information Systems Research 11(3), pp. 219-240.

Barry, E., Kemerer, C.F., and Slaughter, S.A., 2006. “Environmental Volatility, Development Decisions

and Software Volatility: A Longitudinal Analysis”, Management Science, 52(3), pp. 448-464.

Basili, V.R., and Boehm, B.W., 2002. “COTS-based Systems Top 10 list,” IEEE Computer 34(5), pp. 91-

95.

Boehm, B.W., 1991. “Software Risk Management: Principles and Practices,” IEEE Software 8(1), pp. 32-

41.

Boh, W.F., Slaughter, S.A., and Espinosa, J.A., 2007. “Learning from Experience in Software

Development: A Multilevel Analysis,” Management Science 53 (8), pp. 1315-1331.

Box-Steffensmeier, J.M., and Zorn, C., 2002. “Duration models for repeated events,” Journal of Politics

64(4), pp. 1069-1094.

Box-Steffensmeier, J.M., De Boef, S., and Joyce, K. A., 2007. “Event Dependence and Heterogeneity in

Duration models: The Conditional Frailty Model,” Political Analysis 15(3), pp. 237-256.

Brown, N., Cai, Y., Guo, Y., Kazman, R., et al., 2010. “Managing Technical Debt in Software-reliant

Systems,” Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research,

pp. 47-52.

Ceccagnoli, M., Forman, C., Huang, P., and Wu D.J., 2012. “Co-creation of Value in a Platform

Ecosystem: The Case of Enterprise Software,” MIS Quarterly 36(1), pp. 263-290.

Chellappa, R., Sambamurthy, V., and Saraf, N., 2010. “Competing in Crowded Markets: Multimarket

Contact and the Nature of Competition in the Enterprise Systems Software Industry,” Information

Systems Research, 21(3), pp. 614-630.

Cox, D.R., 1972. “Regression Models and Life-tables,” Journal of the Royal Statistical Society, Series B

34(2), pp. 187-220.

Curtis, B., Jay, S., Szynkarski, A., 2012. “Estimating the Principal of an Application’s Technical Debt,”

IEEE Software 29(6), pp. 34-42.

Darcy, D.P., Kemerer, C.F., Slaughter, S.A., and Tomayko, J.E., 2005. "The Structural Complexity of

Software: An Experimental Test," IEEE Transactions on Software Engineering 31(11), pp. 982-

995.

Dauxois, J-Y., and Sencey, S., 2009. “Non-parametric tests for recurrent events under competing risks,”

Scandinavian Journal of Statistics, 36(4), pp. 649-670.

Davenport, T., 1998. “Putting the Enterprise into the Enterprise System,” Harvard Business Review 76(4),

pp. 121-131.

Deelstra, S., Sinnema, M., and Bosch, J., 2005. “Product Derivation in Software Product Families: A

Case Study,” Journal of Systems and Software 74(2), pp.173-194.

Devaraj, S., and Kohli, R., 2003. “Performance Impacts of Information Technology: Is Actual Usage the

Missing Link,” Management Science (49:3), pp. 273-289.

Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., and Mockus, A., "Does Code Decay? Assessing the

Evidence from Change Management Data," IEEE Transactions on Software Engineering 27(1),

pp.1-12.

Esteves, J., and Bohorquez, V., 2007. “An Updated ERP Systems: Annotated Bibliography 2001-2005,”

Communications of the AIS 19(18), pp. 386-446.

Ethiraj, S.K., and Levinthal D., 2004. "Modularity and Innovation in Complex Systems," Management

Science 50(2), pp. 159-173.

Ethiraj, S.K., Ramasubbu, N., and Krishnan, M.S., 2012. “Does Complexity Deter Customer-Focus?,”

Strategic Management Journal 33(2), pp. 137-161.

Franke, N. and von Hippel, E., 2003. “Satisfying Heterogeneous User Needs via Innovation Toolkits:

The Case of Apache Security Software,” Research Policy 32(7), pp. 1199-1215.

Franke, N. and Piller, F., 2004. “Value Creation by Toolkits for User Innovation and Design: The case of

the watch market,” Journal of Product Innovation Management 21(6), pp. 401-415.

Fine, J.P. and Gray, R.J., 1999. “A Proportional Hazards Model for the Subdistribution of a Competing

Risk,” Journal of American Statistical Association 94 (446), pp. 496-509.

Finney, S., and Corbett, M. 2007. “ERP Implementation: A Compilation and Analysis of Critical Success

Factors,” Business Process Management Journal 13(3), pp. 329-347.

Gable, G.G., 1996. “A Multidimensional Model of Client Success When Engaging External Consultants,”

Management Science 42(8), pp. 1175-1198.

Garg, S., Puliafito, A., Telek, M., and Trivedi, K., 1998. “Analysis of Preventive Maintenance in

Transaction Based Software Systems,” IEEE Transactions on Software Engineering 47(1), pp.

96-107.

Gartner 2013, http://www.gartner.com/newsroom/id/2537815.

Gjerde., K.A.P., Slotnick, S.A., and Sobel, M.J., 2002. "New Product Innovation with Multiple Features

and Technology Constraints," Management Science 48(10), pp. 1268-1284.

Greenstein, S., and Wade, J.B. 1998. "The Product Lifecycle in the Commercial Mainframe Computer

Market, 1968-1982," Rand Journal of Economics, 29(4), pp. 772-789

Grover, V., Fiedler, K., and Teng, J. 1997. “Empirical Evidence on Swanson’s Tri-core Model of

Information Systems Innovation,” Information Systems Research 8(3), pp.273-287.

Jin, Z., and Offutt, J., 2001. “Deriving Tests from Software Architectures,” Proceedings of the 12th

International Symposium on Software Reliability Engineering, pp. 308-313.

Harter, D.E., Krishnan, M.S., and Slaughter, S.A., 2000. “Effects of Process Maturity on Quality, Cycle

Time, and Effort in Software Product Development,” Management Science 46(4), pp. 451-466.

Henderson, R.M, and Clark, K. 1990. “Architectural Innovation: The Reconfiguration of Existing Product

Technologies and the Failure of Established Firms,” Administrative Science Quarterly 35(1), pp.

9-30.

Hitt, L., Wu, D.J., and Zhou, X., 2002. "Investment in Enterprise Resource Planning: Business Impact

and Productivity Measures," Journal of Management Information Systems 19(1), pp. 71-98.

http://www.gartner.com/newsroom/id/2537815

Holland, C.P., and Light, B., 1999. “A Critical Success Factors Model for ERP Implementation,” IEEE

Software 16(3), pp. 30-36.

Huang, P., Ceccagnoli, M., Forman, C., and Wu, D.J., 2013. “Appropriability Mechanisms and the

Platform Partnership Decision: Evidence from Enterprise Software,” Management Science 59(1),

pp. 102-121.

Huckman, R.S., Staats, B.R., and Upton, D.M., 2009. "Team Familiarity, Role Experience, and

Performance: Evidence from Indian Software Services," Management Science 55(1), pp. 85-100.

Iansiti, M., 2000. “How the Incumbent Can Win: Managing Technological Transitions in the

Semiconductor Industry,” Management Science 46(2), pp. 169-185.

Ji, Y., Kumar, S., Mookerjee, V., Sethi, S.P., and Yeh, D., 2011, “Optimal enhancement and lifetime of

software systems: A control theoretic analysis,” Production and Operations Management 20(6),

889-904

Kapur, P.K., Pham, H., Anand, S., and Yadav, K., 2011. “A Unified Approach for Developing Software

Reliability Growth Models in the Presence of Imperfect Debugging and Error Generation,” IEEE

Transactions on Reliability 60(1), pp. 331-340.

Kemerer, C.F., 1995. “Software Complexity and Software Maintenance: A Survey of Empirical

Research,” Annals of Software Engineering 1(1), pp. 1-22.

Kemerer, C. and Darcy, D. 2005. “OO Metrics in Practice”, IEEE Software, 22(6), pp. 17-19.

Kemerer, C. and Paulk, M. 2009. "The Impact of Design and Code Reviews on Software Quality: An

Empirical Study Based on PSP Data", IEEE Transactions on Software Engineering, 35(4), pp.

534-550.

Ko, D-G., Kirsch, L.J., and King, W.R., 2005. “Antecedents of Knowledge Transfer from Consultants to

Clients in Enterprise System Implementations,” MIS Quarterly 29(1), pp. 59-85.

Kruchten, P., Nord, R.L., and Ozkaya, I., 2012. “Technical Debt: From Metaphor to Theory and

Practice,” IEEE Software 29(6), pp. 18-21.

Kuk, D., and Varadhan, R., 2013. “Model Selection in Competing Risks Regression,” Statistics in

Medicine 32(18), pp. 3077-3088.

Lau, B., Cole S.R., and Gange, S.J., 2009. “Competing Risk Regression Models for Epidemiologic Data,”

American Journal of Epidemiology 170(2), pp. 244-256.

Li, S., Shang, J., and Slaughter, S.A., 2010. “Why do software firms fail? Capabilities, Competitive

Actions, and Firm Survival in the Software Industry from 1995 to 2007,” Information Systems

Research 21(3), pp. 631-654.

Lyytinen, K., Mathiassen, L., and Ropponen, J., 1998. “Attention Shaping and Software Risk-A

Categorical Analysis of Four Classical Risk Management Approaches,” Information Systems

Research 9(3), pp. 233-255.

MacCormack, A., Verganti, R., and Iansiti, M., 2001. “Developing Products on “Internet Time”: The

Anatomy of a Flexible Development Process,” Management Science, 47(1), pp. 133-150.

MacCormack, A., and Verganti, R., 2003. “Managing the Sources of Uncertainty: Matching the Process

and Context in Software Development,” Journal of Product Innovation Management, 20(3), pp.

217-232.

MacCormack, A., Rusnak, J., and Baldwin, C.Y., 2006. “Exploring the Structure of Complex Software

Designs: An Empirical Study of Open Source and Proprietary Code,” Management Science,

52(7), pp. 1015-1030.

MacCormack, A., LaMantia, M.J., Cai, Y., and Rusnak, J., 2008. “Analyzing the Evolution of Large-

Scale Software Systems using Design Structure Matrices and Design Rule Theory: Two

Exploratory Cases,” Proceedings of the 7
th
 Working IEEE/IFIP Conference on Software

Architecture (WICSA), Vancouver, Canada, pp 83-92.

Markus, M.L., Tanis, C., and van Fenema, P.C., 2000. “Enterprise Resource Planning: Multisite ERP

Implementations,” Communications of the ACM 43(4), pp. 42-46.

McCabe, T.J., 1976. “A Complexity Measure,” IEEE Transactions on Software Engineering (SE-2:4), pp.

308-320.

McCabe, T.J., and Butler, C.W., 1989. “Design Complexity Measurement and Testing,” Communications

of the ACM (32:12), pp. 1415-1423.

Mens, T., and Tourwe, T., 2004. “A Survey of Software Refactoring,” IEEE Transactions on Software

Engineering, 30(2), pp. 126-139.

Meyer, M.H., Tertzakian, P, and Utterback, J.M., 1997. “Metrics for Managing Research and

Development in the Context of the Product Family,” Management Science 43(1), pp. 88-111.

Marinescu, R., 2012. “Assessing Technical Debt by Identifying Design Flaws in Software Systems,” IBM

Journal of Research and Development 56(5), pp. 9:1-9:13.

Masini, A., and Wassenhove, L.N., 2009. “ERP Competence-Building Mechanisms: An Exploratory

Investigation of Configurations of ERP Adopters in the European and U.S. Manufacturing

Sectors,” Manufacturing and Service Operations Management 11(2), pp. 274-298.

Nah, F. F-H., Lau, J. L-S., Kuang, J., 2001. “Critical Success Factors for Successful Implementation of

Enterprise Systems,” Business Process Management Journal 7(3), pp. 285-296.

Parnas, D.L., 1994. “Software Aging,” Proceedings of the 16
th
 International Conference on Software

Engineering, Sorrento, Italy, May 16-21, 1994, pp. 279-287.

Pintilie, M., 2007. “Analysing and Interpreting Competing Risk Data,” Statistics in Medicine 26(6), pp.

1360-1367.

Ramdas, K., and Randall, T., 2008. “Does Component Sharing Help or Hurt Reliability? An Empirical

Study in the Automotive Industry,” Management Science 54(5), pp. 922-938.

Ramasubbu, N., Mithas, S., and Krishnan, M.S., 2008. “High Tech, High Touch: The Effect of Employee

Skills and Customer Heterogeneity on Customer Satisfaction with Enterprise System Support

Services,” Decision Support Systems 44(2), pp. 509-523.

Ramasubbu, N., Kemerer, C.F., and Hong, J., 2012. "Structural Complexity and Programmer Team

Strategy: An Experimental Test," IEEE Transactions on Software Engineering 38(5), pp. 1054-

1068.

Ramasubbu, N. and Kemerer, C.F., 2014. “Managing Technical Debt in Enterprise Software Packages”,

IEEE Transactions on Software Engineering 40(8), pp. 758-772.

Ranganathan, C., and Brown, C.V., 2006. "ERP Investments and the Market Value of Firms: Toward an

Understanding of Influential ERP Project Variables," Information Systems Research 17(2), pp.

145-161.

Reiss, S.P., 2006. “Incremental Maintenance of Software Artifacts,” IEEE Transactions of Software

Engineering 32(9), pp. 682-697.

Rogers, W.H., 1994. “ssa4: Ex post tests and diagnostics for a proportional hazards model,” Stata

Technical Bulletin 19, College Station, TX: Stata Press, pp. 23-27.

Sarker, S., and Lee, A.S., 2003. “Using a Case Study to Test the Role of Three Key Social Enablers in

ERP Implementation,” Information and Management 40(8), pp. 813-829.

Subramanayam, R., and Krishnan, M.S., 2003. “Empirical Analysis of CK Metrics for Object-Oriented

Design Complexity: Implications for Software Defects,” IEEE Transactions on Software

Engineering 29(4), pp. 297-310.

Subramanyam, R., Ramasubbu, N., and Krishnan, M.S., 2012. “In Search of Efficient Flexibility: Effects

of Software Component Granularity on Development Effort, Defects, and Customization Effort,”

Information Systems Research, 23(3), pp. 787-803

Slaughter, S.A., Harter, D.E., and Krishnan, M.S., 1998. “Evaluating the Cost of Software Quality,”

Communications of the ACM 41(8), pp. 67-73.

Slaughter, S.A., and Kirsch, L.J., 2006. “The Effectiveness of Knowledge Transfer Portfolios in Software

Process Improvement: A Field Study,” Information Systems Research 17(3), pp. 201-320.

Taylor, L.L., and Pena, E.A., 2013. “Nonparametric estimation with recurrent competing risks data,”

Lifetime Data Analysis, pp. 1-24.

Tom, E., Aurum, A., and Vidgen, R., 2013. “An Exploration of Technical Debt,” Journal of Systems and

Software 86(6), pp. 1498-1516.

Umble, E.J., Haft, R.R., and Umble, M.M., 2003. “Enterprise Resource Planning: Implementation

Procedures and Critical Success Factors,” European Journal of Operations Research 146(2), pp.

241-257.

Vogt, C., 2002. “Intractable ERP: A Comprehensive Analysis of Failed Enterprise-Resource-Planning

Projects,” ACM SIGSOFT Software Engineering Notes 27(2), pp. 62-68.

von Hippel, E., 1998. "Economics of Product Development by Users: The Impact of “Sticky” Local

Information," Management Science 44(5), pp. 629-644.

von Hippel, E., and Katz, R., 2002. "Shifting Innovation to Users via Toolkits," Management Science

48(7), pp. 821-833.

Williams, R., and Pollock, N., 2012. “Moving Beyond the Single Site Implementation Study: How (and

Why) We Should Study the Biography of Packaged Enterprise Solutions,” Information Systems

Research, 23(1), pp. 1-22.

Woodard, C.J., Ramasubbu, N., Tschang, T., and Sambamurthy, V., 2013. “Design capital and design

moves: the logic of business strategy,” MIS Quarterly 37(2), pp. 537-564.

Wu, D.J., Ding, M. and Hitt, L., 2013. “IT Implementation Contract Design: Analytical and Experimental

Investigation of IT Value, Learning, and Contract Structure” Information Systems Research 24

(3), pp. 787–801.

Zhou, B., Fine, J., Latouche, A., and Labopin, M., 2012. “Competing risks regression for clustered data,”

Biostatistics 13(3), pp. 371-383.

Online Appendix

A1. Mining the Software Repository and Identifying Software Changes

A1.1. Mining the Software Repository

At the vendor and client sites of this research study the software production process involved a

robust software configuration management system called Perforce version control (Perforce 2014). This

system was the central repository that stored the different versions of the software and associated

documents during the ten year lifecycle of the enterprise systems we studied. Data in this central

repository was organized in terms of projects. Each project consisted of system files at the granularity of

revisions done to the system files at every hour during the ten year period. Overall, there were about 6100

projects, 45 million system files, and about 1.2 billion file revisions done by 4133 developers accounting

to a total size of about 2TB of software archival data.

Although the individual software production processes at the 48 client firms varied, they all

followed a similar structure composed of development and maintenance phases, and the data in the

repository reflected this distinction between the different phases, and project data was organized into

different trunks and branches of a product release. When the vendor released a maintenance patch (called

a service pack), clients created a separate branch of a project in which they assembled, tested, and

deployed the service pack provided by the vendor. All client-driven changes were also maintained in the

same way in separate project trunks and branches. This organization helped us parse the software

repositories and identify all the individual changes to a client system, and classify them into vendor or

client-driven changes. Similar to the experience of other software researchers, we were able to identify

which software changes happened, and where they happened in the source code for the systems at all our

client firms (Holschuh et al. 2009).

A1.2. Identifying and Sequencing Changes

To build an empirical dataset from the software repository we utilized a proprietary tool supplied

by the vendor to parse the software code in the repository. Utilizing this tool, we were able to parse the

different versions of the system files in the repository (version histories) to identify the components of an

enterprise system that changed together at a given time, which is termed evolutionary coupling

(Zimmerman et al. 2005). Using the vendor-supplied tool we could identify evolutionary coupling at

different granularities, such as at the levels of hourly time intervals, system files, and even at the entities

level, for example at the level of classes and methods in object-oriented program code. We utilized these

evolutionary couplings to perform the phase and sequence analyses to identify and sequence the changes

that happened to the enterprise systems at our client sites over the ten year period. Through trial and error,

and iteratively refining the evolutionary coupling entities at different time intervals, we determined that a

monthly aggregation of changes was optimal for our empirical data construction. This aligned well with

the monthly product release history documents that we collected from the product management division

of the firm. Therefore, our dataset is organized according to 120 evolutionary phases (12 months x 10

years) during which we observe system failures.

A1.3. Cause-Effect Analysis

For each incidence of a system failure we performed a cause-effect analysis utilizing the fault tree

analysis (FTA) procedures established in the software engineering literature (Nakajo and Kume 1991).

During FTA we utilized pre-defined classification methods using the failure causes already known to the

clients and the vendor, as well as emergent classification schemes based on clustering of similar data from

the historical software repositories. The emergent classification schemes were particularly helpful to

identify root causes of system failures when a particular system change involved both client and vendor-

driven changes. Whenever there was ambiguity in the root causes classification, we collaborated with the

client and vendor system administrators and quality assurance personnel to resolve the ambiguity. In the

final dataset all system failures were clearly marked as caused by either client errors or vendor errors, and

there were no overlap between these classifications.

A2. Data Structure

We tracked the evolution of the enterprise systems at 48 clients over a ten year period. Figure A1

shows the cumulative time period in months when the system was active in production at each of the 48

client sites and the total number of client error and vendor error failures at those sites. We can see from

Figure A1 that the data is right-censored as the systems at different client sites experienced different

failure rates, maintenance schedules, and were eventually retired at different time periods. In a given time

period, a system at a client site could fail because of client errors or due to vendor errors. That is, client

and vendor errors compete for system failure. A system failure typically evokes a comprehensive

maintenance response including a systematic root-cause analysis and bug fixing effort. After the

maintenance following a failure, a client system is typically denominated with a different version number

because it would have been ‘patched’ with the latest bug and stabilization fixes released by the vendor. To

employ the competing risks modeling approach, we treat the different versions of a system at a client site

as siblings in a family and cluster them (using client id) to account for correlations due to unobserved

shared factors. Overall, the dataset includes a total of 3641 observations with 193 system failures due to

client errors and 191 system failures due to vendor errors.

Figure A1. Histogram of Observations

A3. Technical Debt, Modular and Architectural Maintenance: An Example from the Dataset

In this example we focus on events specific to the warehouse management business process of

client #23 in our dataset. At time t=1 the warehouse management system went live in production at the

client site. Throughout the first year (until t=12) the client used the vendor-provided system without any

modifications. At time t=13, the client modified the source code and database schema of the system to

implement a modified way of allocating warehouse space to items. This involved redefining the barcode

generation scheme, as well as the corresponding storage procedures in the database. In implementing this

custom business logic, the client violated 3 vendor-provided APIs (barcode generator, warehouse job

scheduler, database monitoring job). Furthermore, 30% of the modified code and 25% of the new

database schema also violated the vendor-prescribed design and programming standards. While

implementing the new system changes the client team also undertook maintenance activities to integrate

the new source code and database schema with other parts of the system. These maintenance activities

involved examining 10% of the overall source code of the system and 5% of the interconnections between

the different modules involved in the system integration.

At the start of the next time period (t=14), the modified system went live in production at the

client site. For the next three time periods no system failures were reported. However, during this period

the vendor released service packs to update its base platform. Normally (as seen in t=2 to t=12), these

vendor-provided updates were automatically patched to the system without any additional effort required

from the client. However, since the source code was modified at t=13, automatic updating of vendor

service packs was disabled. To implement the vendor service packs, the client team had to manually

inspect and test the system. We observed that the maintenance effort to implement each of the vendor

update packs was similar to the effort spent to integrate the business logic and database change made by

the client at t=13 (modular maintenance: 10% and architectural maintenance:5%).

At t=18 the system failed. The root cause analysis revealed that the failure was due to a client

error that stemmed from the system modifications done by the client at t=13. The system failed because it

could not resolve a conflict when two different items with the same barcodes were competing for

warehouse shelf space at the same time. Because of faulty business logic in the barcode generation

function implemented by the client, two different items were allocated the same barcode at the same time.

Furthermore, the vendor-provided database schema and API for periodic database monitoring were

circumvented by the client. Thus, the vendor-provided database monitoring job could not alert about

duplicate barcodes in the database in a timely fashion to prevent the eventual conflict and system failure.

To resolve the system failure issue the client teams undertook maintenance activities that involved

modification of the barcode generation and warehouse space allocation functions. The database was also

purged of all duplicate barcode records for different warehouse items. The maintenance also contributed

to a decrease in technical debt in the system as the client teams partially reverted back to the original

vendor-provided libraries for the barcode generation, warehouse space allocation, and database

monitoring functions. One of the API violations pertaining to the database monitoring job was also fully

resolved. Overall, this corrective maintenance effort involved modular maintenance activities that

involved examination of about 75% of all module-level functions in the system and architectural

maintenance that involved examining about 20% of the interfaces between the modules.

Between t=19 and t=23 there were no system failures at the client site. However, as seen earlier

(t=14 to t=17), vendor-provided updates were not automatically patched to the system. To implement the

vendor service packs, the client team had to manually inspect and test the system (modular maintenance:

50% and architectural maintenance: 10%). We observed that the maintenance effort to implement each of

the vendor update packs was higher than before at t=13 and t=14. More of the maintenance effort was

spent on modular maintenance, presumably to avoid system failures similar to the one that happened at

t=18.

At t=24 the system failed again. This time the root cause analysis was a lengthy and complex

process as the client and vendor teams had to go back and forth to localize the error and allocate

responsibilities to fix the problem. Eventually, the root cause analysis revealed that the failure was due to

a dormant vendor error related to the cache sizes allocated to barcodes. The original vendor design for file

caching had not anticipated more than a million items in the warehouse. Even though the vendor’s

database scheme could accommodate more than a billion barcodes, the file caching systems implemented

by the vendor could not handle barcodes that were more than 7 digits. The client’s modified business

logic and the subsequent maintenance to the barcode generation scheme to avoid duplicates (t=18) had

contributed to a deluge of barcodes in the client’s system. At t=24 the newly generated barcodes exceeded

7 digits and triggered the error in the file caching function that caused the system failure. Thus, the client

modification of the barcode generation scheme and the subsequent client-driven maintenance activities to

prevent duplicate records had triggered a dormant vendor error.

The vendor issued a service pack to rectify the file caching problem at no cost to the client.

However, to implement the service pack the client had to undertake additional maintenance activities as

automatic updating of vendor service packs was not possible because of the source code modifications.

This maintenance effort was mostly spent on architectural maintenance including the verification of file

caching interfaces across the different modules, the corresponding API parameters, and the modified

database schemas. It is important to note that at the end of t=24 when the system was reinstituted after the

resolution of the file caching error, technical debt level of the client’s system had not altered. This is

because the maintenance activities pertaining to the resolution of the file caching error did not involve

rolling back the modifications to the business logic or database changes enacted at t=13 and subsequently

at t=18.

A4. Return on Investments for Various Maintenance Scenarios

Table A1 presents detailed module-level results of the cost benefits analysis for various

maintenance scenarios, which were summarized in Figure 6 in §6.1.2 of the paper. For each of the

business process hazards in Column (2) of Table A1 we analyze the nine hypothetical scenarios (Column

(3)) for the proposed maintenance projects that were within the ranges of activity at the client firms in our

dataset. For each of these scenarios we collected actual maintenance costs from projects conducted at our

client sites. The average values of these maintenance costs for the respective modules are reported in

Column (4) of Table A1. As described in §6.1.1 of the paper, we derived risk exposure values for each

business process hazard under the nine maintenance scenarios. For each of the scenarios we calculated the

reduction in risk exposure levels by utilizing the regression estimates of the hazard of system failures due

to client errors (§5, Table 4). These values are presented in Column (5) of Table A1. The modular and

architectural maintenance activities in the proposed project might also introduce new hazards arising from

conflicts with the errors in the vendor supplied platform. We estimated the increase in business risk

exposure due to this new hazard by utilizing the regression results presented in the paper (§5, Table 4),

and report them in Column (6) of Table A1. Column (7) presents the module-level net benefits or losses

estimated for each of the maintenance scenarios, and the corresponding return on investments is shown in

Column (8) of Table A1.

Table A1. Evaluating Enterprise System Maintenance Decisions
(1) (2) (3) (4) (5) (6) (7) (8)

Module
Hazard in business
process

Project Scenario

(modular%,

architectural%)

Maintenance
project cost ($)

Reduction in

risk exposure

(thousand $)

Increase in

risk exposure

(thousand $)

Benefits (Losses)

of maintenance

project ($)

Return on

Investments

(%)

Invoice
management

Customer invoices
not generated

S1: (0%, 0%) $0.00 $0.00 $0.00 $0.00 0.00
S2: (0%, 30%) $42,210.07 $78.89 $15.78 $20,899.93 49.51
S3: (0%, 70%) $98,490.15 $94.67 $25.24 -$29,069.15 -29.51
S4: (30%, 0%) $28,140.04 $126.22 $59.95 $38,125.46 135.48

S5: (30%, 30%) $70,350.11 $205.11 $63.11 $71,647.39 101.84
S6: (30%, 70%) $126,630.20 $220.89 $94.67 -$410.20 -0.32

S7: (70%, 0%) $65,660.10 $189.33 $126.22 -$2,550.10 -3.88
S8: (70%, 30%) $107,870.17 $268.22 $189.33 -$28,982.67 -26.87

S9: (70%, 70%) $164,150.26 $315.55 $220.89 -$69,485.26 -42.33

Payments
management

Incorrect billing
amounts collected

S1: (0%, 0%) $0.00 $0.00 $0.00 $0.00 0.00

S2: (0%, 30%) $25,751.38 $29.79 $2.75 $1,291.81 5.02
S3: (0%, 70%) $66,753.21 $31.37 $3.15 -$38,524.15 -57.71
S4: (30%, 0%) $15,500.92 $32.17 $3.98 $12,686.26 81.84
S5: (30%, 30%) $26,252.30 $32.96 $2.01 $4,696.24 17.89
S6: (30%, 70%) $87,254.13 $35.82 $6.06 -$57,493.55 -65.89

S7: (70%, 0%) $42,835.48 $34.54 $6.73 -$15,020.28 -35.07
S8: (70%, 30%) $73,586.85 $35.33 $6.99 -$45,245.04 -61.49

S9: (70%, 70%) $114,588.69 $36.13 $7.26 -$85,720.26 -74.81

Customer

order

management

Customer orders

delivered to wrong

locations

S1: (0%, 0%) $0.00 $0.00 $0.00 $0.00 0.00

S2: (0%, 30%) $5,527.79 $7.03 $1.34 $1,500.87 27.15
S3: (0%, 70%) $12,731.51 $7.83 $3.14 -$4,904.65 -38.52
S4: (30%, 0%) $3,951.86 $8.23 $6.09 $4,272.05 108.10
S5: (30%, 30%) $8,479.65 $9.64 $8.69 $1,147.66 13.53
S6: (30%, 70%) $15,083.38 $10.04 $11.03 -$5,054.41 -33.51
S7: (70%, 0%) $10,921.01 $11.34 $17.76 $401.23 3.67
S8: (70%, 30%) $12,848.80 $12.85 $18.88 -$19.68 -0.15

S9: (70%, 70%) $19,552.52 $14.05 $20.14 -$5,520.16 -28.23

Customer
services

Customer-reported

issues not

recorded

S1: (0%, 0%) $0.00 $0.00 $0.00 $0.00 0.00

S2: (0%, 30%) $36,129.95 $1.54 $0.73 -$35,322.80 -97.77
S3: (0%, 70%) $84,303.21 $2.05 $1.47 -$83,718.92 -99.31

S4: (30%, 0%) $24,086.63 $2.93 $2.13 -$23,281.92 -96.66
S5: (30%, 30%) $60,216.58 $3.59 $1.61 -$58,236.58 -96.71
S6: (30%, 70%) $108,389.84 $4.09 $4.40 -$108,696.98 -100.28
S7: (70%, 0%) $56,202.14 $4.88 $8.06 -$59,383.57 -105.66
S8: (70%, 30%) $92,332.08 $5.36 $9.45 -$96,425.94 -104.43
S9: (70%, 70%) $140,505.34 $6.13 $9.53 -$143,902.49 -102.42

Managerial

reports

Regulatory reports

not filed

S1: (0%, 0%) $0.00 $0.00 $0.00 $0.00 0.00

S2: (0%, 30%) $34,259.14 $100.56 $13.41 $52,895.03 154.40
S3: (0%, 70%) $79,937.99 $120.68 $35.58 $5,160.23 6.46

S4: (30%, 0%) $22,839.43 $160.90 $91.03 $47,025.74 205.90
S5: (30%, 30%) $57,098.57 $261.46 $156.81 $47,557.79 83.29

S6: (30%, 70%) $102,777.42 $281.58 $268.62 -$89,819.80 -87.39
S7: (70%, 0%) $53,291.99 $241.35 $425.15 -$237,095.09 -444.90
S8: (70%, 30%) $87,551.13 $341.91 $629.25 -$374,884.50 -428.19
S9: (70%, 70%) $133,229.99 $402.25 $897.43 -$628,414.77 -471.68

Warehouse

management

Wrong stock

levels held

S1: (0%, 0% $0.00 $0.00 $0.00 $0.00 0.00
S2: (0%, 30%) $33,373.56 $48.56 $4.86 $10,328.19 30.95
S3: (0%, 70%) $147,871.64 $92.26 $12.82 -$68,431.57 -46.28

S4: (30%, 0%) $42,249.04 $133.05 $32.49 $58,309.66 138.01
S5: (30%, 30%) $105,622.60 $172.82 $55.16 $12,032.80 11.39

S6: (30%, 70%) $190,120.68 $187.81 $92.57 -$94,884.19 -49.91
S7: (70%, 0%) $98,581.10 $191.66 $142.76 -$49,679.99 -50.40

S8: (70%, 30%) $161,954.66 $193.84 $205.10 -$173,212.35 -106.95
S9: (70%, 70%) $246,452.74 $194.23 $282.97 -$335,194.77 -136.01

References cited in the Appendix

Holschuh, T., Pauser, M., Herzig, K., Zimmerman, T., Premraj, R., and Zeller, A., 2009. “Predicting

Defects in SAP JAVA Code: An Experience Report,” Proceedings of the 31
st
 International

Conference on Software Engineering (Companion Volume), pp. 172-181.

Nakajo, T., and Kume, H., “A Case History Analysis of Software Error Cause-Effect Relationships,”

IEEE Transactions on Software Engineering 17(8), pp. 830-838.

Perforce 2014, Perforce Version Control, http://www.perforce.com/product/components/version-control

Accessed on 5/2/2014

Zimmerman, T., Weißgerber, P., Diehl, S., Zeller, A., 2005. “Mining Version Histories to Guide Software

Changes,” IEEE Transactions on Software Engineering 31(6), pp. 429-445.

http://www.perforce.com/product/components/version-control%20Accessed%20on%205/2/2014
http://www.perforce.com/product/components/version-control%20Accessed%20on%205/2/2014

