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Technical Debt and the Reliability of Enterprise Software Systems:  

A Competing Risks Analysis 

 

Abstract 

Enterprise software systems are required to be highly reliable as they are central to the business 

operations of most firms. However, configuring and maintaining these systems can be highly complex, 

making it challenging to achieve high reliability. Resource constrained software teams facing business 

pressures can be tempted to take design shortcuts in order to deliver business functionality more quickly. 

These design shortcuts and other maintenance activities contribute to the accumulation of technical debt, 

that is, a buildup of software maintenance obligations that need to be addressed in the future. We model 

and empirically analyze the impact of technical debt on system reliability by utilizing a longitudinal 

dataset spanning the 10 year lifecycle of a commercial enterprise system deployed at 48 different client 

firms. We use a competing risks analysis approach to discern the interdependency between client and 

vendor maintenance activities.  This allows us to assess the effect of both problematic client modifications 

(client errors) and software errors present in the vendor-supplied platform (vendor errors) on system 

failures.  

 We also examine the relative effects of modular and architectural maintenance activities 

undertaken by clients in order to analyze the dynamics of technical debt reduction. The results of our 

analysis first establish that technical debt decreases the reliability of enterprise systems. Second, modular 

maintenance targeted to reduce technical debt was about 53% more effective than architectural 

maintenance in reducing the probability of a system failure due to client errors, but had the side-effect of 

increasing the chance of a system failure due to vendor errors by about 83% more than did architectural 

maintenance activities. Using our empirical results we illustrate how firms could evaluate their business 

risk exposure due to technical debt accumulation in their enterprise systems, and assess the estimated net 

effects, both positive and negative, of a range of software maintenance practices. Finally, we discuss 

implications for research in measuring and managing technical debt in enterprise systems. 

 

Keywords: technical debt, enterprise systems, software reliability, architectural maintenance, modular maintenance, 

software maintenance, software product management, software package customization, competing risks 

modeling, Integrated Development Environment (IDE) toolkits, software risks, software complexity, 

Enterprise Resource Planning (ERP) systems, Commercial Off The Shelf (COTS) software.



   

Technical Debt and the Reliability of Enterprise Software Systems:  

A Competing Risks Analysis 

1. Introduction 

Enterprise software systems, such as Enterprise Resource Planning (ERP) systems, are central to 

the business operations of a wide variety of firms, and constitute one of the biggest spending categories in 

their IT budgets (Hitt et al. 2002).  Worldwide spending on enterprise software systems is estimated to 

exceed 300 billion U.S. Dollars, with a forecasted growth of about 6% in the next few years (Gartner 

2013).  Enterprise software systems are required to be highly reliable, as system failures could cause 

severe disruptions to the business processes that they support (Wu et al. 2013).  However, prior research 

shows that achieving this high reliability is often difficult, in part due to the challenges involved in 

implementing and maintaining these systems over a long planning horizon amidst increasing business 

pressures that mandate shortened cycle times for software projects (Banker et al. 1998; Banker and 

Slaughter 2000; Masini and Wassenhove 2009).  

Software teams facing such challenges may, in part, resort to design shortcuts to rapidly deliver 

the functionality demanded by business and thereby trade off the potential longer-term benefits of 

appropriate software design investments for these short-term business benefits (Austin 2001; Woodard et 

al. 2013)
1
.  By taking design shortcuts and other maintenance activities software organizations incur what 

has been referred to as technical debt, that is, accumulated maintenance obligations that must be 

addressed in the future (Brown et al. 2010; Woodard et al. 2013; Ramasubbu and Kemerer 2014).  For 

example, engineers facing time pressures to deliver functionality may hardcode text strings, saving the 

additional design efforts needed for properly externalizing text fragments from software code. However, 

such shortcuts, while expedient, tend to create long-term problems.   For example, the well-known “Y2K” 

problem was the result of a coding practice that was adequate in the short run, but created a long-term 

maintenance obligation when all of the two digit date fields had to eventually be remediated to 

accommodate the change in the century.   Enterprise systems laden with high levels of technical debt are 

not only prone to failures, but also create hindrances for the successful execution of business strategies 

(Woodard et al. 2013).  Technical debt accumulation, combined with business pressures and limited 

resources, can place software teams in a downward cycle of taking design shortcuts, leading to an 

increase in system failures, leading to more expensive and difficult maintenance efforts, which may, in 

turn, lead to more design shortcuts. Thus, it could be expected that reducing the amount of technical debt 

                                                           
1 Customizations at the client site may be based on requirements or functionality not available in the COTS software. These 

customizations may not always be possible to accommodate within the confines of the vendor prescribed design and development 

standards. These functional changes associated with customizations are likely to cause compatibility issues with the vendor’s 

native software, irrespective of how these changes are made, including, but not limited to, design shortcuts.  



   

over an enterprise system’s evolution would confer business benefits by improving system reliability, that 

is, the extent to which a system is resilient to failures (Ramdas and Randall 2008; Guajardo et al. 2012). 

Technical debt reduction in an enterprise software systems environment is difficult, as these 

applications are often built on an underlying vendor-supplied, commercial-off-the-shelf (COTS) platform 

which is customized by clients for their use (Basili and Boehm 2001; Chellapa et al. 2010; Subramanyam 

et al. 2011). Maintenance of such systems is especially challenging because of the interdependencies and 

potential for conflict between the underlying, vendor-supplied platform and the customizations done by 

individual clients (Masini and Wassenhove 2009; Ceccagnoli et al. 2012; Huang et al. 2013). For 

example, software update patches supplied by vendors as part of their maintenance plans could be 

incompatible with the customizations implemented by clients.  Similarly, design shortcuts taken by clients 

could damage the overall software architecture of the underlying platform and disrupt maintenance plans 

offered by vendors (MacCormack and Verganti 2003; MacCormack et al. 2008).  These 

interdependencies make it difficult to measure and assess the impact of technical debt on system 

reliability and therefore to plan the software maintenance activities necessary to reduce the debt. As a 

consequence of this complexity and the longitudinal nature of the required data there is only a very 

limited set of empirical studies of technical debt despite the business value in rigorously assessing the 

economic payoff from software maintenance activities in the presence of interdependencies between 

vendor-supplied COTS software and client-driven customizations.   

This study addresses this need by analyzing a longitudinal dataset spanning the10 year lifecycle 

of a COTS-based enterprise software system deployed at 48 different client firms. We address the 

challenging research need of accounting for the interdependencies between client and vendor maintenance 

of COTS-based enterprise systems by distinguishing system failures due to software errors that originate 

in the modifications made by a client (client errors) from errors that are residual in the platform supplied 

by the vendor (vendor errors). Then, utilizing a competing risks analysis empirical approach, we assessed 

the impact of technical debt on system failures due to these client and vendor errors (Fine and Gray 1999; 

Pintilie 2007; Zhou et al. 2012; Kuk and Varadhan 2013). In our analysis an important focus was on the 

relative effects of modular and architectural design maintenance activities. Modular design maintenance 

activity focuses on improvements in individual modules that do not alter the interdependencies among the 

modules of a system. In contrast, maintenance activities targeting architectural design improvements 

focus on the interdependencies among the modules and the overall structure of a system (Henderson and 

Clark 1990; MacCormack et al. 2006, 2008). Utilizing the 10 year lifecycle data we empirically assess the 

impact of both technical debt and the modular and architectural maintenance activities undertaken by the 

48 client firms on system reliability (i.e., the probability of a system failure).    



   

The results of our analysis first establish that technical debt is associated with an increase in the 

probability of a system failure (a decrease in reliability).  Next, we find that modular maintenance 

activities undertaken by the client firms were 53% more effective in reducing the chance of a system 

failure due to client errors than were architectural maintenance activities. However, modular maintenance 

undertaken by client firms also increased, by about four fold, the chance of a system failure due to vendor 

errors present in the underlying COTS platform.  In contrast, architectural maintenance undertaken by 

clients, although less effective in improving the reliability of enterprise systems with respect to client 

errors, had only half the chance of causing a system failure due to vendor errors than did modular 

maintenance. These results establish the interdependency between client and vendor maintenance 

activities in COTS-based enterprise systems, and illustrate the dynamics of technical debt reduction and 

its effect on the reliability of these systems.  

This study makes four primary research and practical contributions in advancing the software 

maintenance research literature on technical debt.  First, most software maintenance research studies have 

focused on single site, bespoke systems implementations, and researchers have called for investigations of 

multi-site implementations of packaged enterprise software, given their increased practical importance 

(e.g., Williams and Pollock 2012).  And to understand the full implications of enterprise solutions for 

organizations scholars highlight the need to examine software implementations over multiple use settings 

and time. Our study addresses these needs by analyzing the implementations of a COTS-based enterprise 

system at 48 different client sites over a ten year period.  Second, rigorous empirical analysis of the 

reliability of enterprise software systems has generally been limited in prior research due to the lack of 

fine-grained and reliable data on software failures.  Our ten year longitudinal dataset allows us to 

empirically measure the technical debt accumulated in real world enterprise software and to assess its 

dynamic impact on system reliability. Third, due in part to methodological challenges, prior software 

maintenance studies did not delineate risks arising from the different aspects of an enterprise software 

design and its implementation context, which prevented the accurate assessment of the impacts of 

technical debt on reliability of software systems.  We address this challenge by utilizing a competing risks 

analysis approach that enables us to account for event-specific hazards that impact the failure of 

enterprise software systems. Finally, we utilize our empirical results to illustrate how firms could evaluate 

their business risks exposure due to technical debt accumulation in their enterprise systems and assess the 

likely effects, both positive and negative, of a range of software maintenance practices. 

The rest of the paper is organized as follows. In §2 we provide a theoretical background for 

client-vendor interdependence in COTS-based software product development, and develop our 

hypotheses by utilizing relevant product development, technical debt, and software engineering 

economics research literatures. We also describe our conceptual model.  In §3 we enumerate our data 



   

collection procedures and explain the competing risks analysis methodology in §4. We present the results 

of our analysis in §5 and discuss implications for research and practice in §6. §7 provides a brief 

summary and conclusion.   

2. Theoretical Background and Hypotheses 

We begin by introducing the product development literature that explains how COTS vendors 

address client demand heterogeneity by providing a toolkit approach to software product development.  

Then, we elaborate how maintenance done by clients using the vendor-supplied toolkits could result in 

technical debt accumulation in COTS-based enterprise systems, which introduces interdependencies 

between the vendor and client product development tasks. Building on this background, and on empirical 

results of prior software maintenance studies, we develop our hypotheses relating technical debt, software 

maintenance, and the reliability of enterprise systems.  

2.1. Demand Heterogeneity and Technical Debt in COTS Product Development 

In a COTS-based software development model client firms purchase a software package that 

typically consists of a pre-configured version of the software and the necessary tools for further client-

specific customization and development (Masini and Wassenhove 2009; Subramanyam et al. 2011; 

Ceccagnoli et al. 2012; Huang et al. 2013). Such a toolkit approach to product development has been 

attributed by von Hippel and Katz to a vendor strategy of addressing heterogeneous customer demands by 

shifting the costs and risks associated with specific needs-related product development to users (von 

Hippel and Katz 2002). They have proposed that the toolkit approach aims to partition product 

development and ongoing maintenance tasks into two different categories of subtasks, each owned 

independently by the COTS vendor and client firms respectively, and that such a partition empowers 

users to learn and innovate through iterative trial-and-error activities without the need for sole reliance on 

the vendor. Supporting this proposition, case studies of both manufacturing-related product development 

and open source software products have shown that the toolkit approach tends to lower overall costs and 

to improve both product development and maintenance productivity for users (von Hippel 1998; Franke 

and von Hippel 2003; Franke and Piller 2004).  

However, there are two important aspects of the toolkit approach in COTS-based software 

development that warrant further investigation. First, it is not clear if ongoing product development and 

maintenance activities for a product-like COTS software that evolves continuously during its lifecycle can 

be fully partitioned into independent client and vendor subtasks (Barry et al. 2006). The evolution of the 

vendor-supplied software package and its associated toolkit has an impact on a client’s development and 

maintenance activities by either constraining or expanding the design space available for specific needs-



   

related customizations (Baldwin et al. 2006). Similarly, needs-related customizations of a software 

package enacted by clients can also have an impact on the product development decisions of the vendor 

(MacCormack et al. 2001; Woodard et al. 2013). For example, a vendor might incorporate a popular 

modification enacted by several clients into its standard release of the software (Ethiraj et al. 2012). Or, 

perhaps more rarely, a vendor could also delete functionality from its standard release of the software 

package if it was incompatible with the existing infrastructure of several of its important clients (Deelstra 

et al. 2005; Ethiraj et al. 2012). Thus, the likely interdependence between the ongoing product 

maintenance activities of a vendor and its clients needs to be carefully considered while assessing the 

performance of COTS-based enterprise software systems.  

Second, the manner in which a client uses the toolkit supplied by a vendor for ongoing product 

development and maintenance activities needs to be examined when assessing the performance outcomes 

of COTS-based enterprise systems. The toolkit supplied by the vendor enables clients to configure and 

customize the systems to suit their specific needs, as well as to modify the source code to add 

functionality that is not offered by the standard vendor product releases. However, it is well-documented 

that resource-constrained software teams tend to take design shortcuts in enacting these enterprise system 

modifications by violating vendor-specified standards, trading off longer-term benefits of appropriate 

design investments for short-term business benefits, such as quicker roll-out of the functionality (Austin 

2001; Brown et al. 2010; Woodard et al. 2013). These design shortcuts tend to result in the accumulation 

of technical debt in enterprise systems. This technical debt, like financial debt, accumulates “interest” 

over time, which is to say that the costs of fixing design shortcuts to reduce enterprise systems technical 

debt increase with time (Brown et al. 2010; Curtis et al. 2012; Ramasubbu and Kemerer 2014). If not 

addressed through appropriate maintenance, technical debt severely impacts the evolution of an enterprise 

system by making it progressively harder for software teams to add new functionality and to rectify 

software errors (Ramasubbu and Kemerer 2014). Furthermore, in a COTS-based enterprise system the 

accumulation of technical debt by a client is generally not visible to a vendor, adding further complexity 

to the interdependence between the vendor and client tasks.  

In this study we extend the examination of the toolkit approach to software product development by 

focusing on the interdependence between the vendor and client maintenance activities, and by accounting 

for the technical debt existing in enterprise software systems. Specifically, we distinguish system failures 

due to client errors and system failures due to vendor errors. Client errors are the software errors that 

originate from the client-induced modifications of a COTS-based enterprise system. Client errors occur 

because of problems associated with customizations, for example developing use-specific functionality 

through design shortcuts that violate vendor-specified programming standards (Ethiraj et al. 2012; 

Woodard et al. 2013). Such violations cannot be monitored and prevented by the vendor because the 



   

toolkits through which the source code modifications are performed are locally installed and used by 

clients. In addition to client errors, the reliability of COTS-based enterprise systems is also affected by 

residual errors in the vendor-supplied software. It is well-documented that software vendors necessarily 

optimize software product testing and verification activities on a variety of factors which prevents them 

from achieving zero defects through quality control (Slaughter et al. 1998; Kemerer and Paulk 2009). As 

a result, COTS software products released by vendors often contain residual errors, which we term as 

vendor errors. By distinguishing systems failures due to client errors and those due to vendor errors we 

propose to study the distinct effects of technical debt and maintenance activities on the different types of 

systems failures. In the following sections we explicate the relationships among these constructs and 

develop the logic leading to our hypotheses. 

2.2. Technical Debt and System Reliability 

As explained above technical debt arises from design shortcuts and non-standard system changes 

undertaken by client software teams. Resource-constrained software teams under pressure to quickly 

implement functionality requested by business users may adopt expedient “quick and dirty” methods in 

lieu of methods recommended by vendors (Brown et al. 2010; Woodard et al. 2013).  Such system 

changes increase the interdependencies between the different functions within a module and across the 

various modules of a system, and therefore increase the overall structural complexity of the system 

(Austin 2001; Ethiraj and Levinthal 2004). Software that is structurally more complex has been shown to 

be more error-prone, as higher levels of structural complexity hinder program comprehension and cause 

sub-optimal allocation of maintenance tasks in software teams (Banker and Slaughter 2000; Darcy et al. 

2005; Kemerer and Darcy 2005, Ramasubbu et al. 2012).  Higher levels of technical debt can also cause 

unpredictable ripple effects within a system, as errors propagate through the myriad interconnections 

between the system’s various modules, often causing maintenance activities to be less effective relative to 

what they might have been (Kemerer 1995; Banker et al. 1998). Over time this contributes to software 

entropy, where the code “decays”, that is, deteriorates in quality, causing unpredictable system failures 

(MacCormack et al. 2006; Eick et al. 2001).  

Technical debt also increases the knowledge asymmetry between COTS vendors and their clients. 

Vendors possess knowledge unique to the development and maintenance of their toolkits, whereas clients 

possess knowledge related to their specific use cases (von Hippel and Katz 2002). Such unique 

knowledge possessed by both the vendors and the clients is often “sticky,” that is, transfer of the 

knowledge between these parties is costly, which tends to contribute to knowledge asymmetry between 

vendors and clients (Ko et al. 2005; Esteves and Bohorquez 2007).  Accumulation of technical debt by 

clients and the resulting increase in structural complexity increase the differences between client-modified 



   

versions of the enterprise system and the standard configuration of the system supported by the vendor. 

Combined with  the “stickiness” of vendor and client knowledge the resulting ineffective knowledge 

transfer over the lifecycle of a COTS-based enterprise system hampers the timely adoption of vendor-

provided problem solutions, best practices, and design standards that could otherwise improve 

performance of the systems at client installations (Slaughter and Kirsch 2006; Woodard et al. 2013).  

Thus, technical debt accumulation can cause software teams to be in a continuous downward cycle 

of taking design shortcuts, leading to increased structural complexity, leading to more expensive and 

difficult maintenance efforts, which may, in turn, lead to more technical debt accumulation and new 

design shortcuts. Therefore, all else being equal, we expect enterprise systems with higher levels of 

technical debt to be more error prone and less reliable, which leads to our first set of hypotheses: 

Hypothesis 1: Technical Debt and Enterprise System Failures 

 H1a: A higher level of technical debt in an enterprise software system is associated with 

a higher probability of a system failure due to client errors.  

 H1b: A higher level of technical debt in an enterprise software system is associated with 

a higher probability of a system failure due to vendor errors.  

2.3. Technical Debt Reduction through Modular and Architectural Software Maintenance  

Software maintenance activities to reduce technical debt in enterprise systems focus on rolling back 

the shortcuts taken by software teams and reducing the resulting structural complexity (Marinescu 2012; 

Ramasubbu and Kemerer 2014).  Such maintenance activities could be categorized as either addressing 

software design within the modules of a system (modular) or across several modules of the system 

(architectural). Modular maintenance activities to reduce technical debt include fixing flaws within a 

module (such as increasing cohesion among functions and methods within a module), altering complex 

string manipulation functions, and removing unreferenced methods, hard-coded business rules and direct 

usage of database tables (Curtis et al. 2012).  In contrast, architectural maintenance activities to reduce 

technical debt focus on improving system-level modularity by simplifying the interconnections between 

the modules of a system (e.g., decreasing unnecessary coupling) and thereby minimizing the ripple effects 

due to modular errors (Banker et al. 1998; MacCormack et al. 2006).  

While prior software maintenance studies have shown that maintenance activities undertaken to 

reduce structural complexity of a system improve software quality (Subramanyam and Krishnan 2003; 

Subramanyam et al. 2011), the relative efficacies of modular and architectural maintenance activities in 

the presence of technical debt remains an open empirical question.  Previous research in product 

development (e.g., Henderson and Clark 1990) has examined modular and architectural product 

development activities to assess the performance of innovation efforts of organizations.  Examining the 

relative efficacies of modular and architectural software maintenance activities in COTS-based enterprise 

system maintenance is needed as it would aid in furthering our understanding of the dynamics involved in 



   

technical debt reduction, and could help firms to organize software maintenance activities more 

efficiently (Curtis et al. 2012). Client software maintenance activities specifically target client-induced 

modifications, and since clients possess the knowledge related to their specific use-cases they are well-

positioned to identify erroneous business logic, conduct root-cause analysis, and perform preventive 

maintenance (Garg et al. 1998). However, client-induced system modifications, especially those enacted 

by taking design shortcuts, might also alter system architecture. Client software teams tend to have 

limited knowledge and resources to roll back such architectural changes without error (Woodard et al. 

2013).  This is because details about the architectural aspects of COTS systems, such as interfaces with 

database schemas, global views of cross-module method calls, and other system-level configurations, are 

typically not fully disclosed by vendors to clients, making it challenging for client software teams to 

reduce technical debt by revamping system architectures (Davenport 1998; Masini and Wassenhove 2005; 

Woodard et al. 2013). Therefore, we expect modular maintenance of clients to be more effective in 

reducing system failures due to client errors than will architectural maintenance, which leads to our 

second set of hypotheses: 

Hypothesis 2: Software Maintenance and Client Errors 

H2a: Modular maintenance will be associated with a lower probability of a system 

failure due to client errors. 

H2b: Architectural maintenance will be associated with a lower probability of a system 

failure due to client errors. 

H2c: Modular maintenance will be associated with a lower probability of a system 

failure due to client errors than will architectural maintenance. 

Although both modular and architectural maintenance to reduce technical debt can be expected to 

help reduce client errors (H2a and H2b), in the presence of knowledge asymmetry there is an increased 

chance that these maintenance activities targeted at reducing client errors in a system could introduce new 

hazards by activating vendor errors that were dormant in the system (Parnas 1994; Reiss 2006; Kapur et 

al. 2011).  Case studies of long-term enterprise systems usage have documented how client-driven 

maintenance activities could be in conflict with the vendor’s planned product maintenance (Vogt 2002; 

Woodard et al. 2013). The chances of such conflicts increase when the enterprise system continues to 

evolve during its entire lifecycle and when the vendor and client planning horizons for the system are 

divergent (Barry et al. 2006).  It is common for vendors of enterprise systems not to reveal development 

and maintenance roadmaps that cover the entire lifecycle of a product, but only to disclose activities 

pertaining to shorter time periods through, for example, annual release notes (Huang et al. 2013; 

Ceccagnoli et al. 2012).  This gives enterprise software product vendors the necessary flexibility to adapt 

to new technological and market conditions, including extending the lifecycle of a product, or even 

abandoning a product in favor of a new technology (Greenstein and Wade 1998; MacCormack et al. 

2001; Gjerde et al. 2002).  



   

However, the limited release of information on the vendor’s product development and maintenance 

roadmap often causes clients to address product limitations through their own self-driven activities (von 

Hippel 1998; Andersen and Morch 2009). Such client-initiated maintenance activities in the presence of 

knowledge asymmetry and technical debt increase the chance of conflicts with newer versions of 

components released by the vendor, such as new APIs, database schema alterations, and user interface 

specifications (Woodard et al. 2013). Therefore, we could expect both modular and architectural 

maintenance undertaken by clients in order to reduce technical debt to increase the probability of system 

failure due to vendor errors. While architectural maintenance may not be as effective as modular 

maintenance in reducing client-specific technical debt (hypothesis H2c), it is expected to have a lower 

chance of accidentally triggering any dormant vendor errors. This is because, unlike architectural 

maintenance, modular maintenance activities initiated by clients do not typically take into consideration 

system-level design parameters and interrelationships between and among the different modules of a 

system. Thus, the chance of conflicts between clients’ modular technical debt reduction and vendor-

driven platform-level changes is expected to be particularly high. Even though knowledge asymmetry 

between the vendor and client teams renders any client-driven maintenance activities to be less effective 

in preventing system failures due to vendor errors, architectural maintenance activities provide better 

opportunities for client teams to identify potential conflicts with vendor-driven platform changes. Thus, 

we expect client modular technical debt reduction to be associated with a higher chance of system failures 

due to vendor errors than will clients’ architectural maintenance. The above effects are captured in the 

following set of hypotheses: 

Hypothesis 3: Software Maintenance and Vendor Errors 

H3a Modular maintenance will be associated with a higher probability of a system 

failure due to vendor errors. 

H3b Architectural maintenance will be associated with a higher probability of a system 

failure due to vendor errors. 

H3c: Modular maintenance will be associated with a higher probability of a system 

failure due to vendor errors than will architectural maintenance. 

All of these hypothesized effects are summarized in Table 1. 

Table 1.  Technical Debt Reduction and System Failures 
 Probability of a system failure due 

to Client errors  

Probability of a system failure due 

to Vendor errors 

Technical debt H1a:                 + H1b:                + 

Modular maintenance H2a:                ―  H3a:                + 

Architectural maintenance H2b:                ― H3b:                + 

Relative effects of modular vs. 

architectural maintenance 

H2c: modular < architectural H3c: modular > architectural 



   

2.4. Conceptual Model 

Our conceptual model of the competing risks analysis approach is shown in Figure 1. The Client 

Model in Figure 1 shows the conceptualized effects of technical debt, modular maintenance, and 

architectural maintenance on the probability of a system failure due to client errors, and portrays a system 

failure caused by vendor errors as a competing event. The Vendor Model in Figure 1 captures the effect 

of the independent variables on the chance of a system failure due to vendor errors as the primary focus, 

and treats a system failure due to client errors as a competing event. Figure 1 also shows that we control 

for covariates other than the main independent variables, and these covariates are described and discussed 

further in §3.4. Overall, our conceptualization enables the accounting of both event-specific hazards and 

the analysis of distinct effects of covariates on system failures. 

Figure 1. Conceptual Model 

 

3. Research Site and Data Collection 

We collected data pertaining to the lifecycle of a COTS enterprise resource planning (ERP) 

software package from a leading multinational vendor and its clients. The package was first released by 

the vendor in 2002 and was in continuous operation until 2012 when it was permanently retired in favor 

of a new product. The package consisted of a preconfigured version of the application and an integrated 



   

development environment (IDE), which was a toolkit that clients could use to modify the preconfigured 

version. The vendor-supplied IDE supported a proprietary programming language similar to C++ and a 

variety of relational databases.  The vendor also maintained a client resource website, which had 

extensive training materials for learning the programming language supported by the toolkit.  Throughout 

the ten year lifecycle of the product the vendor added functionality to both the preconfigured application 

and to the toolkit. The vendor also took responsibility for the maintenance of the preconfigured software 

package and toolkit, and provided regular updates to fix their residual errors.  

We began our data collection efforts in cooperation with the product management division of the 

vendor. We collected archival data on the evolution of the product, including the source code pertaining 

to all versions of the product released during its ten year lifecycle. For each release of a new version of 

the product in the ten year time period we collected the corresponding release notes, which contained 

detailed information on the product roadmap, corrected vendor errors, and the anticipated rollout dates of 

the next generation of functionality.   

The vendor maintained a database of all clients who had purchased the product and a separate 

team, called the installed-base support team, was in charge of post-sale customer support and maintenance 

activities. Clients (typically Fortune 500 firms) purchased licenses from the vendor to install the software 

package in their premises. Clients used the toolkit to view and edit source code of the ERP software 

package, alter certain system-level configurations, modify business logic embedded in the source code, 

and alter a section of the database tables. All modifications done by clients were system labeled using 

unique identifiers and timestamps. All client-modified modules were automatically disabled from 

receiving updates from the vendor and had to be manually patched by the clients. Typically, the regular 

maintenance updates from the vendor were communicated through a portal called the Customer Support 

Network (CSN), and designated client administrator personnel were automatically notified when new 

vendor-supplied software updates were available for installation. 

Through the CSN channel we contacted the client firms to gather data on their specific 

installations of the product. Initially, out of the total universe of 117 firms in the vendor’s client database, 

75 client firms responded to our request to study their implementations. However, given the data demands 

of the research we were limited to gathering the full set of data for this study from 48 customer 

installations. We checked for any potential bias in client participation by comparing the participant and 

non-participant client firms for their size, employee count, product versions, and sales revenues, and did 

not record any significant differences. Similar to the archival data we collected from the vendor, we 

collected source code from all the 48 client firms and stored them in a version control database. We then 

contacted the individual project managers in the client firms to collect data on the software personnel who 



   

worked on the client installations. In some cases the human resource managers of the client firms also 

provided additional data on the experience level of software teams in the firms.  

Once we had the archival data in place we processed it in three stages. In the first stage we 

performed a series of sequence and phase analyses to track the evolution of the vendor-supplied product 

and the 48 variants at the client firms (Kemerer and Slaughter 1999).  We broke down the ten year 

lifecycle of the product into 120 phases (12 months x 10 years) and tracked changes to the software 

within and across these phases. Through this we were able to map the growth of functionality in the 

vendor and client versions of the system for the entire ten year lifecycle.  The sequence and phase 

analysis also helped us derive the software volatility metric from the changes we observed in the distinct 

phases of the product’s lifecycle. We utilized software mining and version control tools
2
 provided by the 

vendor to compare the source code pertaining to the different versions of the product at different time 

intervals. After the source code modifications were identified in client systems we assessed whether the 

client-initiated modifications detrimentally altered structural complexity, and thereby contributed to 

technical debt.  Following the best practices prescribed in the literature (Curtis et al. 2012; Marinescu 

2012), we identified these detrimental modifications by assessing whether the alterations violated vendor-

prescribed design and development standards.  For example, if a source code modification enacted direct 

database access or complex method calls without utilizing prescribed APIs, it was ascribed as 

contributing to the buildup of technical debt.  Through the unique labels and timestamps associated with 

the source code modifications in client versions we were able to trace and cluster changes with the same 

change id and timestamp to identify the groups of modules and their interfaces which were impacted by a 

specific client-initiated change.  This helped us to identify whether a particular client-initiated change was 

primarily modular maintenance or architectural maintenance
3
.  

In the second stage of data preparation we traced all system failures reported by client firms and 

mapped the communication logs present in the CSN system with the product version control logs supplied 

by the clients. For each system failure we marked the origin point of the error in the corresponding source 

code version, and categorized system failures as either client errors or vendor errors
4
. We further 

corroborated the identified cause of errors with the quality control and post-mortem reports that were 

logged in the CSN system.  

                                                           
2
 Additional details on the change sequence analysis and software code mining process are presented in §A1 of the online 

Appendix for the interested reader. 
3 We identified clusters of source code changes that happened at a given time (evolutionary coupling) and then compared 

evolutionary coupling sequences with the actual modular dependencies (structural coupling) to identify whether a particular 

source code change was primarily related to a modular or architectural maintenance activity.  Additional details are presented in 

§A1 of the online Appendix. See also Figure 2 for an overview of the verification process.   
4 Additional details on the cause-effect analysis for categorizing client and vendor errors are presented in §A1 of the online 

Appendix. Also see Figure 2 for an overview of the verification process.   

 



   

In the final stage of our data preparation we engaged with the product management and 

programming personnel at both the vendor and the client sites to verify our coding of the different facets 

of the archival data.  Programmers helped us verify whether our coding of key customizations in source 

code was categorized correctly as adhering to the vendor-prescribed design standards or not. We utilized 

the client software quality assurance personnel to audit our archival data and to verify if the maintenance 

activities we identified for a given time period correctly matched with the internal project management 

records. Finally, product management personnel at the vendor site verified the mapping of sequence and 

phase analysis we derived from source code changes with the evolutionary milestones of the product as 

recorded in the internal product release notes.  

The above data collection and verification steps are summarized in Figure 2. An overview of the 

dataset structure and a walkthrough example from the dataset illustrating the evolution of an application 

at a client site, technical debt accumulation in the system, the modular and architectural maintenance 

undertaken by the client, and the impact on system failures are presented in §A2 and §A3 of the online 

Appendix.     

Figure 2. Data Collection and Verification Steps 

 



   

3.1. Constructs and Measurement 

3.2. Dependent Variable: System Reliability 

The dependent variable of interest in our analysis is the reliability of an enterprise system, which is 

measured as the extent to which the system is resilient to failures
5
. Our dataset captures all of the system 

failure incidences at 48 client firms during the ten year observation period of this study. To assess a 

system’s resilience to failure we calculate the time interval (hours) between subsequent incidences of 

system failures at a client site, and utilize this time-to-failure variable for survival analysis (Ramdas and 

Randall 2008; Guajardo et al. 2012). The specific competing risk analysis approach we utilize for 

modeling the failure of an enterprise system is further elaborated in §4. 

3.3. Independent Variables 

3.3.1. Technical Debt  

We measure the technical debt accumulated in a client firm’s enterprise system by tracking client-

driven modifications of the COTS systems that violated design standards prescribed by the COTS vendor 

(Curtis et al. 2012; Woodard et al. 2013). Specifically, we tracked all source code modifications 

undertaken by a client in the ten year lifecycle of their system, and derived three variables to capture the 

accumulation of technical debt. First, we calculated the percentage of client-driven source code 

modifications that did not adhere to vendor-prescribed standards to capture the overall extent of 

problematic alterations undertaken by a client. Then, we categorized these customizations into 

modifications that altered business logic and those that altered the vendor-provided data schemas. Finally, 

for all newly client-added source code, we examined the functional calls and database access statements 

in the source code to identify the incidences of non-use of application programming interfaces (APIs) 

prescribed by a vendor, and derived the total number of API violations variable. The three variables, the 

percentage of problematic customizations pertaining to business logic, percentage of data schema 

modifications that violated vendor’s master data standards, and the number of API violations, together 

capture the overall extent of technical debt in a client’s system by accounting for design shortcuts in 

newly added source code as well as alterations done to existing source code (Curtis et al. 2012; Marinescu 

2012).  As shown in Figure 2, all of these research measurements (and the ones described below) were 

validated by vendor and client technical staff.  

                                                           
5
 The term “system failure” here refers to the “critical” category of errors identified by the clients and vendor, resolutions of 

which were well documented and governed as per the client-vendor maintenance contracts. These failures caused business 

process disruptions which were considered critical by the clients. Therefore, we only consider what other software defect 

analyses might refer to as “highly serious” or “critical errors”. 



   

3.3.2. Modular Maintenance 

To capture the extent of modular maintenance undertaken by a client in a time period we derived 

the percentage of total source code in modules that were examined by client teams during maintenance 

activities in that time period. This is similar to the code coverage software metric utilized during software 

verification that captures the ratio of total software test requirements satisfied by a given verification 

procedure (Amman and Offutt 2008).  

3.3.3. Architectural Maintenance 

To capture the extent of architectural maintenance activities undertaken by a client in a time 

period we derived the percentage of interfaces between modules that were examined during the 

maintenance period. This measure is similar to the interface coverage software metric utilized during 

module integration testing procedures that verify if the interfaces between modules in a given system 

communicate correctly (Jin and Offutt 2001). 

3.4. Control Factors 

In examining the hypothesized relationships between technical debt, maintenance activities, and 

enterprise system reliability we consider the following factors that have been identified in the literature as 

potential covariates: (1) source code size; (2) volatility; (3) team experience; (4) use of consultants as 

intermediaries; (5) product age, (6) number of client sites, (7) transaction volume, (8) logic and data 

complexity, and (10) number of prior failures.   

3.4.1. Source code size  

Source code size has been shown to be an important predictor of project outcomes such as 

productivity and quality, indicating the presence of scale economies in software development and 

maintenance projects (Banker and Kemerer 1989; Banker and Slaughter 1997). All else being equal 

software packages with a larger source code size tend to be more complex and have been reported to be 

associated with an increased number of errors (Kemerer 1995; Subramanyam and Krishnan 2003). 

Therefore, we include the source code size of the client’s version of the software package as a control 

variable in our analysis.   

3.4.2. Volatility 

Prior software product development research has shown that volatility in environmental 

conditions significantly influences the rate of changes in systems, as well as the way those changes are 

enacted (Barry et al. 2006).  From a vendor’s perspective higher environmental volatility would likely 

increase heterogeneity in customer demands (Adner and Levinthal 2001).  This increased demand 

heterogeneity would prompt a vendor to keep its standard release of functionality relatively minimized 

and allow clients to utilize the supplied toolkits to satisfy their unique demands.  Thus, from a client 

perspective an increase in environmental volatility would tend to lead to an increase in software volatility, 



   

that is, the magnitude and rate of changes enacted to the software system
6
 (Barry et al. 2006).  Since 

environmental volatility might not equally impact all clients of an enterprise system, it is possible that 

clients experience different levels of software volatility. The level of software volatility faced by a client 

is known to influence the extent to which the client uses designs that do not violate vendor-prescribed 

standards (Barry et al. 2006).  At the same time, higher levels of software volatility have also been 

associated with lower levels of software quality, and have been identified as a key source of critical 

system failures (Banker and Slaughter 2000; Agarwal and Chari 2007). Therefore, it is important to 

account for software volatility while examining the effect of technical debt-reducing maintenance 

activities on enterprise system reliability. Furthermore, since the software volatility variable accounts for 

the magnitude of all system changes, we can be confident that the key independent variables measuring 

problematic client-initiated modifications (customizations and API violations) in the empirical models are 

appropriately capturing the effects of technical debt accumulated in a client’s enterprise system.  

3.4.3. Team experience 

Empirical evidence from prior research shows that software teams that are stable and consisting 

of more experienced members in their respective roles perform better, all else being equal (Boh et al. 

2007; Huckman et al. 2009).  In particular, generational experience, that is, experience with multiple 

releases of the product over its lifecycle, has been associated with higher software productivity and 

quality (MacCormack et al. 2001).  Furthermore, more experienced software teams have been found to be 

able to handle software volatility in a superior way by developing mature software processes that suit 

their environmental context (Harter et al. 2000; Barry et al. 2006).  Thus, we anticipate that, all else being 

equal, client software teams with higher levels of experience will be associated with fewer enterprise 

system failures.    

3.4.4. Use of consultants as intermediaries 

It is a common practice for clients to use external consultants to implement and maintain their 

enterprise systems (Akkermans and van Helden 2002; Sarker and Lee 2003; Ramasubbu et al. 2008). 

Such external consultants, typically from firms that offer system integration services, play an 

intermediary role between the client software teams and the system vendor. The effects of using external 

consultants for enterprise system projects have been reported as mixed in the literature (Gable 1996).  On 

one hand, external consultants have been noted as being able to bring specialized design knowledge that 

helps software teams in their problem solving activities (Nah et al. 2001; Akkermans and van Helden 

2002).  On the other hand, conflicts between client teams and external consultants in their problem 

solving approach and project priorities, and coordination challenges between these parties have been 

                                                           
6
 We calculated client and vendor software volatility variables separately by taking into account client-initiated and vendor-

initiated changes respectively. However, the two variables were highly correlated (p<0.001 level) so we combined them into a 

single volatility variable to measure the total software volatility of a client’s enterprise system.   



   

identified as critical factors in impacting enterprise system failure rates (Holland and Light 1999; Finney 

and Corbett 2007).  Since the presence of external consultants could potentially alter project dynamics 

and the flow of knowledge between the vendor and client teams, we control for this in our empirical 

models (Sarker and Lee 2003; Ko et al. 2005). 

3.4.5. Product age 

It has been documented that entropy in software products tends to increase with system age, 

causing an increase in system failure rates (MacCormack et al. 2006; Eick et al. 2001). To control for the 

overall effects of product aging, we include the time in months since the enterprise system was installed 

and became operational at a client system in our regression models.   

3.4.6. Number of client sites 

Firms that operate in multiple locations have been documented as partitioning their enterprise 

implementations across these sites (Davenport 1998; Umble et al. 2003).  Case studies of enterprise 

system operations have noted differences in software maintenance practices between multi-site enterprise 

system operations and single-site operations, including the way systems are configured and the manner in 

which resources are allocated to software teams (Holland and Light 1999; Markus et al. 2000).  Also, 

multi-site enterprise system operations have been reported to be complex and more prone to failures than 

single-site implementations (Finney and Corbett 2007).  To account for these potential effects we include 

the number of client sites as a control variable in our models. 

3.4.7. Transaction volume 

The extent of customizations and maintenance of enterprise systems undertaken by clients and the 

eventual performance of these systems might be influenced by the extent to which clients use these 

systems (Devaraj and Kohli 2003). To account for the possible correlations between systems usage and 

maintenance, and the variance in system usage levels across the different clients, we included transaction 

volume as a control variable in our models
7
. A transaction in this context is defined by the vendor as the 

execution of program modules that accomplish specific business functionality. For example, “create 

invoice”, “reconcile stock levels”, and “create compliance report” are some commonly-used transactions 

in the software package. Similar in spirit to Function Points, the transactions metric captures the 

customer-focused functionality offered by the software package (Ramasubbu and Kemerer 2014). 

Transaction volume refers to the cumulative number of transactions executed in a client’s system in an 

observation time period. 

                                                           
7
 We thank an anonymous referee for this suggestion. 



   

3.4.8. Logic and Data complexity 

System failures and the effectiveness of client-driven maintenance activities could be impacted by 

system module characteristics beyond those captured by source code size
8
. Prior research studies have 

shown that logic and data complexity of source code could have a significant impact on the effectiveness 

of software maintenance undertaken by clients (Kemerer 1995; Banker and Slaughter 2000). Accordingly, 

we include two control variables in our models to account specifically for the logic and data complexity 

of the client systems. Logic complexity was measured using McCabe’s cyclomatic complexity metric 

(McCabe 1976) and data complexity was measured using the extended McCabe metric that quantifies the 

complexity of a module's structure as it relates to data-related variables, capturing the number of 

independent paths through data logic of a module (McCabe and Butler 1989). 

3.4.9. Prior failures 

Systems that have failed in the past might be particularly error prone in the future. To account for 

the effects of past failures of client systems, we included the cumulative number of prior system failures 

due to client errors and the cumulative number of prior system failures due to vendor errors as additional 

control variables in our regression models.   

3.4.10. Summary of control factors 

The above constructs and their measurement are summarized in Table 2.  We found that total 

team experience and generational experience of the software team were highly correlated (Pearson’s 

correlation of 0.93).  Hence, we utilized only the total team experience measure in the empirical models.  

Similarly, the three collected measures of software size (KLOC, Function Points, and vendor-defined 

transactions) were highly correlated (Pearson’s correlation of 0.87).  Therefore, we included only the 

KLOC measure of code size in the regression models
9
.  Furthermore, we checked if there was a need to 

include module-level dummy variables in the empirical models to account for module-level use variations 

across the different clients. We found that there were no significant differences across the 48 clients at the 

module-level granularity, but that there were significant differences at the level of transactions in terms of 

transaction volume and transactions variety (i.e., the number of unique transactions). As might be 

expected, transactions variety was highly correlated with code size, and hence we included transaction 

volume and code size as controls in the regression models
10

. The summary statistics and correlation 

between the variables are presented in Table 3. 

                                                           
8
 We thank the department editor and an anonymous referee for this suggestion. 

9
 Regression results did not significantly vary with the choice of any of the alternative software size and team experience 

measures. 
10

 We thank an anonymous referee for this suggestion. 



   

Table 2. Constructs and Variables in Dataset 
Variable Measurement 

Technical debt: Client customizations 

violating vendor standards (business 

logic) 

% total source code modifications by a client that altered vendor-provided 

business logic and did not adhere to vendor-prescribed standards 

Technical debt: Client customizations 

violating vendor standards (data schema) 

% data schema modifications by a client that altered vendor-provided 

master data schema and did not adhere to vendor-prescribed standards 

Technical debt: Client customizations that 

have API violations 

The total number of violations for the non-use of application programming 

interfaces where applicable 

Modular maintenance 
% of source code in a module examined by client teams during the 

maintenance period (code coverage) 

Architectural maintenance % of interfaces between modules examined during the maintenance period 

Volatility 
% of the overall source code of the enterprise system that changed during 

the maintenance time period 

Team experience Average experience of the team in years 

Code size 
Size of the source code base measured in thousands of Lines Of Code 

(KLOC) 

Product age Time since system installation (in months) 

Consultants use 
Indicator variable coded =1 if consultants were ever used as an 

intermediary between the vendor and a client 

Number of client sites 
The number of geographical sites of a client firm in which distinct 

implementations of the enterprise system existed 

Transaction volume 
Total number of transactions completed in a client system during the 

observation period 

Logic complexity McCabe’s cyclomatic complexity metric 

Data complexity McCabe’s extended data complexity metric 

Prior client error failures 
Total number of system failures due to client errors before the current 

observation period 

Prior vendor error failures 
Total number of system failures due to vendor errors before the current 

observation period 

4. Empirical Model 

The event of interest in our analysis is a failure of enterprise systems at 48 firms in a 10 year 

observation period as a measure of their relative reliability. The failure data is right censored because 

systems at the 48 client firms evolved at different rates; for example, systems at the different client sites 

had different failure rates and maintenance schedules, and were eventually migrated or retired in different 

ways at different time periods
11

. Typically, such failures in censored data have been examined using time-

to-event analysis through Cox’s proportional hazard models (Ramdas and Randall 2008; Li et al. 2010).  

In such time-to-event analysis we would look at the time to failure (t), the risk set, the hazard function 

h(t), and the cumulative incidence function (CIF) to assess the factors that contribute to the failure. 

However, the standard single event time model is limited in its ability to analyze COTS-based enterprise 

software system failures because the failure of such systems could be caused by two types of events, 

namely, (1) failures due to client errors, and (2) failures due to vendor errors. In other words, client errors 

and vendor errors compete for system failure. Thus, the standard survival analysis model needs to be 

extended for this competing risks scenario.  

                                                           
11

 An overview of the censored dataset structure and a walkthrough example from the dataset are presented in §A2 

and §A3 of the online Appendix for the interested reader. 



   

Table 3. Summary Statistics and Correlations 
Variable 

 
Mean Std. Dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Customization 
business logic (%) 

1 56.43 25.91 1.00 
       

        

Customization data 

schema (%) 
2 53.29 24.2 0.43 1.00               

API violation (#) 3 43.39 24.02 0.25 0.32 1.00 
     

        

Module 

maintenance (%) 
4 34.77 47.35 0.23 0.16 -0.13 1.00 

    
        

Architecture 
maintenance (%) 

5 32.97 47.07 0.11 0.21 0.17 -0.15 1.00 
   

        

Volatility (%) 6 56.87 22.83 0.07 0.02 0.05 0.02 0.05 1.00 
  

        

Total team 

experience (yrs.) 
7 9.70 2.16 -0.33 -0.32 -0.31 0.06 0.10 -0.26 1.00 

 
        

Code size (KLOC) 8 866.11 259.33 0.27 0.35 0.34 -0.09 -0.06 0.35 -0.29 1.00         

Product Age 

(months.) 
9 55.85 33.45 0.31 0.23 0.28 -0.09 -0.07 0.25 -0.19 0.24 1.00        

Consultants (0/1) 10 0.33 0.48 0.29 0.28 0.21 -0.23 -0.09 0.14 -0.38 0.01 0.42 1.00       

Client sites (#) 11 2.73 1.14 0.11 0.06 0.04 0.15 -0.02 0.19 0.01 0.06 0.11 0.34 1.00      

Transaction volume 

(# 1000s) 
12 62.14 20.53 0.33 0.27 0.31 0.23 0.24 0.16 0.42 0.15 0.11 0.29 0.17 1.00     

Logic complexity 
(#) 

13 11.35 5.41 0.42 0.32 0.31 0.22 0.31 0.28 0.27 0.33 0.19 0.07 0.31 0.18 1.00    

Data complexity (#) 14 6.71 4.32 0.13 0.53 0.25 0.31 0.23 0.30 0.10 0.13 0.57 0.03 0.16 0.22 0.26 1.00   

Prior client error 

failures (#) 
15 5.07 2.13 0.29 0.34 0.18 0.21 0.27 0.23 -0.18 0.12 0.26 -0.06 0.12 0.19 0.36 0.31 1.00  

Prior vendor error 

failures (#) 
16 4.29 2.35 0.26 0.31 0.18 0.18 0.17 0.23 -0.21 0.32 0.28 -0.04 0.15 0.25 0.26 0.36 0.66 1.00 

 Note: For sample size n=3641, correlation coefficients > .03 or < -.03 are statistically significant at p < 0.05 

One way to model the competing risks situation is to use separate cause-specific hazards to 

represent the enterprise system failure rate from vendor errors and client errors, each following a Cox 

proportional hazard model (Cox 1972).  However, since an analysis of a cumulative incidence of system 

failures is a function of both of the cause-specific hazards (client errors and vendor errors), in such an 

approach it would not be possible to directly evaluate the effects of individual covariates, such as code 

size, on the cumulative incidence of system failures.  To overcome this limitation Fine and Gray (1999) 

proposed a semiparametric approach to directly model the cumulative incidence function of competing 

risks using a subdistribution hazard function, which can be intuitively thought of as the hazard for a 

system that fails from a specific cause or does not, and in the latter case has an indefinite survival time 

from the specific cause.  The Fine-Gray model takes into account competing events and does not make 

assumptions about their independence or censoring distribution.  It facilitates testing for covariate effects 

on subdistribution hazards, and issues pertaining to model selection and efficient regression predictions 

could be easily addressed. Therefore, in line with the recommended best practice, in addition to the cause-

specific hazard analysis (Cox model), we also use the Fine-Gray model to empirically assess the system 

failures in our data (Pintilie 2007; Lau et al. 2009).  

Formally, each system in our data is associated with a tuple (T, D), where T is the time-to-failure 

and D is the type of event that captures the possible causes (k=1, 2), namely, client error-related failure 



   

(k=1) and vendor error-related failure (k=2). The cause-specific hazard function for the competing risks is 

the hazard of failing from a given cause in the presence of the other competing event: 

hk(t) = lim
∆𝑡→0

{
𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑘|𝑇 ≥ 𝑡)

∆𝑡
} with D = 1, 2 

The regression model on the cause-specific hazards (Cox model) with the inclusion of covariates 

represented by the vector Z is given as hk(t; Z) = h0k(t) 𝑒
𝛽𝑍.  The total hazard can be calculated as the sum 

of all k hazards, and the survival probability for the k
th
 risk, Sk(t; Z), is interpreted as the survival 

probability for the k
th
 risk if all other risks were hypothetically removed.  The cause-specific coefficient 

estimates for the covariates obtained from this regression model can be interpreted in the same way as 

hazard ratios in the absence of competing risks.  However, as mentioned above, a limitation is that the 

covariate effects do not pertain to the cumulative incidence of system failures.  The Fine-Gray model 

specification below overcomes this limitation. 

In the Fine-Gray regression model the hazard associated with the Cumulative Incidence Function 

(CIF) is defined as Ik(t;Z), which captures the covariate effects directly on the CIF through the 

subdistribution hazard function ℎ𝑘
∗ (t;Z).  This subdistribution hazard is the probability of system failure 

due to a cause given that the system has survived up to time t without any failure, or has had a failure due 

to a competing cause prior to time t.  This means that while analyzing a specific event of interest, the 

model does not censure failures that happen due to competing causes.  

Ik(t;Z) = 1 − 𝑒𝑥𝑝⁡{−∫ ℎ𝑘
∗ ⁡(𝑢, 𝑍)𝑑𝑢}

𝑡

0
 

ℎ𝑘
∗ (t;Z) = ℎ0𝑘⁡

∗ (𝑡)⁡𝑒𝛽𝑍 

ℎ𝑘
∗ (t;Z) = 𝑙𝑖𝑚

∆𝑡→0
{
𝑃(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡, 𝐷 = 𝑘|𝑇 ≥ 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐷 ≠ 𝑘)

∆𝑡
}  

Since ℎ𝑘
∗ (t;Z) is no longer the cause-specific hazard in the Fine-Gray model, the CIF for cause k 

depends not only on the hazard of a specific k, but also on the hazard for the other possible causes. Unlike 

the Cox model, the regression estimates of covariates from the Fine-Gray model directly relate to the CIF. 

The regression model specification with the entire list of covariates for our model is given as: 

⁡⁡⁡⁡⁡⁡⁡⁡ℎ𝑘
∗ (𝑡; 𝑍) = ℎ0𝑘⁡

∗ (𝑡) ∗ exp{⁡𝛽1⁡(𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠⁡𝑙𝑜𝑔𝑖𝑐)
+ 𝛽2⁡(𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑑𝑎𝑡𝑎⁡𝑠𝑐ℎ𝑒𝑚𝑎) + ⁡𝛽3⁡(𝐴𝑃𝐼⁡𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
+⁡𝛽4⁡(𝑚𝑜𝑑𝑢𝑙𝑎𝑟⁡𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)+⁡𝛽5⁡(𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑎𝑙⁡𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒)
+⁡𝛽6⁡(𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦) +⁡𝛽7⁡(𝑡𝑒𝑎𝑚⁡𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒) +⁡𝛽8⁡(𝑐𝑜𝑑𝑒⁡𝑠𝑖𝑧𝑒)
+⁡⁡𝛽9⁡(𝑝𝑟𝑜𝑑𝑢𝑐𝑡⁡𝑎𝑔𝑒) + 𝛽10(𝑐𝑜𝑛𝑠𝑢𝑙𝑡𝑎𝑛𝑡𝑠⁡𝑢𝑠𝑒)
+⁡𝛽11⁡(𝑐𝑙𝑖𝑒𝑛𝑡⁡𝑠𝑖𝑡𝑒𝑠)+⁡𝛽12⁡(𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠⁡𝑣𝑜𝑙𝑢𝑚𝑒) +⁡𝛽13⁡(𝑙𝑜𝑔𝑖𝑐⁡𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)
+⁡𝛽14⁡(𝑑𝑎𝑡𝑎⁡𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) +⁡𝛽15⁡(𝑝𝑟𝑖𝑜𝑟⁡𝑐𝑙𝑖𝑒𝑛𝑡⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)
+⁡𝛽16⁡(𝑝𝑟𝑖𝑜𝑟⁡𝑣𝑒𝑛𝑑𝑜𝑟⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)} 



   

 While estimating the above competing risks regression model we explicitly consider the potential 

dependence across the different versions of a system at a client site. We treat the different versions of a 

system at a client site as siblings in a family cluster that might be correlated due to unobserved shared 

factors. We utilize a recent extension of the Fine-Gray proportional hazard model to derive the estimators 

of the regression parameters specific to clustered data (Zhou et al. 2012). Furthermore, as an alternate 

approach for comparison, we also estimate the model by treating failures of a system at a client’s site as 

ordered and repeated events using variance-correction and frailty models that specifically correct standard 

error of regression estimates for non-independence caused by repeated events (Box-Steffensmeier and 

Zorn 2002)
12

. 

5. Results 

Tables 4 and 5 present the regression results obtained using the Fine-Gray model for clustered 

data and the different Cox models with adjusted standard errors using variance correction and frailty 

approaches. Estimates of models 1 and 2 presented in Table 4 are derived using the competing risks 

estimation approach, treating the 48 client firms as individual clusters. Models 3 and 4 in Table 5 are 

estimated using the latent survivor time approach, which involves estimating two different models for the 

client and vendor failures by resetting the survival data for each of these ways of system failures. In 

models 5 and 6 in Table 5, the estimates from the standard Cox model are adjusted for variance-correction 

to account for repeated events. These estimates were derived using the Prentice-Williams-Peterson (PWP) 

conditional risk-sets method estimated in gap time (Prentice et al. 1981). In the PWP models, an 

individual observation is not at risk for a later event until all prior events have occurred. Accordingly, the 

sample size for the estimation varies from the Fine-Gray and other Cox models because the risk set at 

time t for the k
th
 occurrence of a repeated event is limited to those observations that have already 

experienced k-1 events of that type. Models 7 and 8 in Table 5 are estimated using a frailty approach, 

which treats repeated events in a cluster as a special case of unit-level heterogeneity, specifically as 

random draws from a gamma distribution (Box-Steffensmeier et al. 2007).  

In interpreting the hazard ratio estimates of the various models note that higher system reliability 

is associated with a lower hazard ratio (coefficient < 1) and lower system reliability is associated with a 

higher hazard ratio (coefficient > 1) since the actual measurements are of system failures, i.e., the lack of 

reliability. Referring to Tables 4 and 5 we see that the chi-square statistics for all models are significant at 

p < 0.01, indicating strong statistical support for the overall model selection. Tests of the proportional 
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 We thank an anonymous reviewer for suggesting this approach. We note that the estimation procedures for ordered, recurrent 

events under a competing risk model are complex and not readily available (Taylor and Pena 2013; Dauxois and Sencey 2009). 

The use of the Fine-Gray model for clustered data is appropriate for our data because membership in each of the clusters is 

dependent on the different versions of the software implemented at each client site over time (subject to censoring). For an 

individual member within each of the 48 clusters (i.e., a specific version of a client software), we do not observe repeated failures 

in the data. 



   

hazard assumption of the regression models verified that the hazard ratios were constant over time, and 

therefore, stratification, or time-varying interaction terms, were not needed.  We verified that the results 

were not influenced by outliers in the data by examining the distribution of martingale and deviance 

residuals of the regressions (Rogers 1994).  Coefficient estimates from the various Cox models and the 

Fine-Gray models are in the same direction, increasing the confidence of our empirical results.  Since the 

Fine-Gray model estimates directly relate to CIF, for ease of exposition we utilize the Table 4 Fine-Gray 

model estimates to explain the hypothesis-testing results. 

 

Table 4. Clustered Data Fine-Gray Model Regression Estimates 

  (1) (2) 

  Event of interest: System failure due to 

client errors 

Competing event: System failure due 

to vendor errors 

Event of interest: System failure due to 

vendor errors 

Competing event: System failure due to 

client errors 

Customization-business 

logic 
𝛽1⁡ 1.14*** 1.62*** 

Customization-data schema 𝛽2 1.12*** 1.41*** 

API Violations 𝛽3 1.23*** 1.98*** 

Modular maintenance 𝛽4⁡ 0.22*** 3.98*** 

Architectural maintenance 𝛽5⁡ 0.47** 2.17*** 

Volatility 𝛽6⁡ 1.02*** 1.08*** 

Team experience 𝛽7⁡ 0.62*** 0.88*** 

Code size 𝛽8 1.42*** 1.45*** 

Product age 𝛽9 1.05*** 1.07*** 

Consultants use 𝛽10 0.96* 0.99* 

Client sites 𝛽11 1.04 1.01 

Transaction volume 𝛽12 1.01* 1.08* 

Logic complexity 𝛽13 1.14*** 1.15*** 

Data complexity 𝛽14 1.09** 1.11*** 

Prior client error failures 𝛽15 1.05*** 1.04* 

Prior vendor error failures 𝛽16 1.04*** 2.19*** 

Model Chi-squared statistic  450.98*** 448.35*** 

Variance explained (Pseudo 

R-squared) 
 0.38 0.28 

Observations  3641 3641 

Note: ***, **,* Hazard Ratios significant at p < 0.01, p < 0.05, p < 0.1 respectively 



   

Table 5. Regression Estimates for Cox Models with Adjusted Standard Errors 

  
Cox latent failure models with 

robust standard errors 

PWP repeated failures gap time 

models 

Cox frailty models with robust 

standard errors 

  (3) (4) (5) (6) (7) (8) 

  

System 

failure due to 

client errors 

System 

failure due to 

vendor errors 

System 

failure due to 

client errors 

System 

failure due to 

vendor errors 

System 

failure due to 

client errors 

System 

failure due to 

vendor errors 

Customization-

business logic 
𝛽1⁡ 1.21*** 1.78*** 1.46*** 1.63*** 1.11*** 1.98*** 

Customization-

data schema 
𝛽2 1.19*** 1.19*** 1.24*** 1.52*** 1.05*** 1.50*** 

API Violations 𝛽3 1.32*** 1.95*** 1.14*** 1.62*** 1.02*** 1.31*** 

Modular 

maintenance 
𝛽4⁡ 0.19*** 4.11*** 0.21*** 2.97*** 0.19*** 4.53*** 

Architectural 

maintenance 
𝛽5⁡ 0.38*** 2.63*** 0.42*** 1.36*** 0.39*** 2.38*** 

Volatility 𝛽6⁡ 1.05*** 1.13*** 1.17*** 1.07*** 1.10*** 1.06*** 

Team experience 𝛽7⁡ 0.51*** 0.85*** 0.48*** 0.89*** 0.43*** 0.80** 

Code size 𝛽8 1.51*** 1.29*** 1.30*** 1.05*** 1.49*** 1.06** 

Product age 𝛽9 1.02** 1.08*** 1.01* 1.11** 1.01** 1.07** 

Consultants use 𝛽10 0.96* 0.99* 0.95** 0.97** 0.84 0.97* 

Client sites 𝛽11 1.04 1.07 1.03* 1.09 1.02* 1.00 

Transaction 

volume 
𝛽12 1.01 1.03 1.03 1.02** 1.01* 1.01* 

Logic complexity 𝛽13 1.13*** 1.12*** 1.16*** 1.12*** 1.18*** 1.21*** 

Data complexity 𝛽14 1.03** 1.16*** 1.23*** 1.30*** 1.03** 1.07** 

Prior client error 

failures 
𝛽15 1.06** 1.03* 1.03** 1.02* 1.03** 1.06** 

Prior vendor error 

failures 
𝛽16 1.07*** 2.66*** 1.14*** 1.72** 1.04** 2.73** 

Model Chi-

squared statistic 
 490.27*** 469.55*** 78.91*** 62.56*** 219.54*** 198.81*** 

Frailty parameter      0.25*** 0.31*** 

Variance 

explained (Pseudo 

R-squared) 
 38% 28% 31% 29% 37% 26% 

Observations  3641 3641 386 382 3641 3641 

Note: ***, **,* Hazard Ratios significant at p < 0.01, p < 0.05, p < 0.1 respectively 

Referring to Table 4 we see that a 1% increase in non-standard customization of business logic 

increases the probability of a system failure due to client errors by 14% (Column 1, β1 = 1.14; 14% above 

the baseline hazard of 1).  Similarly, data schema customizations increase the chance of client-error 

system failures by 12%. Also, we see that a 1% increase in non-standard customizations significantly 

increases the probability of a system failure due to vendor errors (Column 2, β1= 1.62 for business logic 

and β2= 1.41 for data schema).  Similarly, a 1% increase in API violations increases the chance of a 

system failure due to client errors by 23% (Column 3, β3 = 1.23), and also increases the chance of a 

system failure due to vendor errors by about two times (Column 4, β3 = 1.98).  Taken together, these 

results show strong support for Hypotheses 1a and 1b that predicted technical debt to increase the 



   

probability of a system failure due to client and vendor errors respectively. This result supports our 

postulation that technical debt results in poor reliability of systems because the source code modifications 

and API violations implemented by clients tend to be error-prone and to accentuate defects present in the 

vendor-supplied package by creating conflicts between client and vendor maintenance activities.  

Hypothesis 2a predicted that modular maintenance would reduce the chance of a system failure 

due to client errors. Referring to Table 4, Column 1, we see that modular maintenance is associated with a 

78% reduction in the probability of a system failure due to client errors (β4 = 0.22, 78% lower than 

baseline hazard ratio of 1), lending strong support for Hypotheses 2a.  We also find full support for 

Hypothesis 3a, which predicted modular maintenance to be associated with a higher probability of a 

system failure due to vendor errors. Our results show that a 1% increase in code coverage during modular 

maintenance to reduce technical debt increases the probability of a system failure due to vendor errors by 

about four times (Table 4, Column 2: β4 = 3.98).   

Our results indicate that architectural maintenance reduces the chance of a system failure due to 

client errors by about 53% (Table 4, Column 1: β5 = 0.47, 53% lower than baseline hazard ratio of 1), 

which supports Hypothesis 2b.  Also, as predicted by Hypothesis 3b, architectural maintenance increases 

the probability of a system failure due to vendor errors by about two times (Table 4, Column 2: β5 = 

2.17). These results are consistent with our postulation that knowledge asymmetries between the clients 

and vendor of a COTS-based enterprise system may lead to conflicts between the maintenance activities 

performed by the clients and the vendor, leading to poor system reliability.   

Hypothesis 2c posited that modular maintenance would be more effective in reducing the 

probability of a system failure due to client errors than would architectural maintenance. The predicted 

hazard ratios of modular maintenance and architectural maintenance variables were significantly different 

(Table 4 Column 1: β4 = 0.22 and β5 = 0.47; test Chi-squared = 6.65, p < 0.01). We see that modular 

maintenance is 25% more effective in reducing the chance of a system failure due to client errors than is 

architectural maintenance. Thus, Hypothesis 2c is fully supported.  

Finally, Hypothesis 3c predicted that modular maintenance would cause more conflicts with the 

vendor platform than would architectural maintenance, and would be associated with a higher probability 

of a system failure due to vendor errors. Referring to Table 4 Column 2, we see that the hazard ratio for 

modular maintenance (β4 = 3.98) is about 83% higher than that of architectural maintenance (β5 = 2.17). 

These predicted hazard ratios were statistically significant, lending support to Hypothesis 5 (test Chi-

squared = 11.40, p < 0.01).  This result shows that the chance of a system failure due to vendor errors 

increases by about two times for every percentage increase in the number of interfaces between modules 

that were altered during architectural maintenance.  However, when technical debt reduction is focused 

only at the module-level without rectifying the interfaces between modules, every percentage of source 



   

code modified within modules is associated with a four-fold increase in the chance of a system failure due 

to vendor errors.  

Figures 3 and 4 visually present the CIF for system failure due to client and vendor errors 

respectively, on a scale from 0 to 1. As the graphs show, modular maintenance is more effective in 

reducing the CIF of system failure due to client errors, but is associated with an increased CIF of system 

failure due to vendor errors. In contrast, architectural maintenance is less effective in reducing the CIF of 

system failure due to client errors, but is associated with a lower level of CIF of system failure due to 

vendor errors.  This illustrates the tradeoffs involved in performing software maintenance of enterprise 

systems in the presence of technical debt.  

Figure 3. Cumulative Incidence of System Failure due to Client Errors 

 

0

.0
5

.1
.1

5
.2

C
u

m
u
la

ti
v
e

 I
n
c
id

e
n
c
e

0 1000 2000 3000 4000 5000
Time (hours)

Modular Maintenance Architectural Maintenance



   

 

 Figure 4. Cumulative Incidence of System Failure due to Vendor Errors 

  

Results for the control variables in the regression models are in the expected directions. We find 

that volatility slightly increased the chance of a system failure due to both client errors (Table 4, Column 

1: β6 = 1.02) and vendor errors (Table 4, Column 2: β6 = 1.08).  More experienced teams were associated 

with a reduction in the probability of a system failure due to client errors by 38% (Table 4, Column 1: β7 

= 0.62) and in the probability of a system failure due to vendor errors by about 12% (Table 4, Column 2: 

β7 = 0.88).  As expected, code size had a significant detrimental effect on system reliability.  Our results 

show that for every KLOC increase in code size, the probability of a system failure due to client errors 

increased by 42% (Table 4, Column 1: β8 = 1.42) and the chance of a system failure due to vendor errors 

increased by 45% (Table 4, Column 2: β8 = 1.45).  The probability of a system failure due to client errors 

increased with product age (Table 4, Column 1: β9 = 1.05) and aging systems were also prone to a higher 

incidence of system failures due to vendor errors (Table 4, Column 2: β9 = 1.07).  The overall effect of the 

use of consultants was to help reduce the chance of a system failure to a small extent (Table 4, Column 1: 

β10 = 0.96, Column 2: β10 = 0.99).  The number of client sites at which the enterprise system was operated 

did not have a statistically significant effect on the probability of a system failure. The estimates for the 

transaction volume variable show that heavier usage is associated with a marginal increase in both client-

error and vendor-error failures (Table 4, Column 1: β12 = 1.01, Column 2: β12 = 1.08). As expected, we 

also see a higher probability of system failures associated with logic and data complexity as well as with 
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the number of previous system failures. Prior vendor failures had a significant and large impact on future 

system failures due to vendor errors (Table 4, Column 2: β16 = 2.19), which indicates that vendor errors 

might have a long-term effect on impacting reliability throughout a system’s lifecycle.   

 To test the potential mediation effect
13

 of technical debt in relating client-level modular 

maintenance and architectural maintenance with client-error related system failures, we used a relatively 

newly developed method for mediation analysis in survival data setting based on the Aalen additive 

hazard model (Lange and Hansen 2011). The schematic representation of the mediation analysis is shown 

in Figure 5. αm represents the change in technical debt as a result of one unit change in modular 

maintenance as modeled by a linear least squares regression. λc and λm represent the regression 

coefficients for Aalen’s additive hazard model when the survival status is regressed on maintenance and 

technical debt respectively. 

Figure 5. Mediation Analysis 

The mediation analysis involved two steps. First, we estimated the effects of maintenance on the 

mediator (technical debt) by a linear regression model. Second, we estimated the effects of both 

maintenance and technical debt on system failure due to client errors by fitting an additive hazard model 

adjusted for other covariates. The total effects (TE) on system failure were given by the sum of direct 

effects (DE) and the indirect effects (IE). The indirect effect through technical debt was given by the 

product of the parameter estimates for the regression of technical debt on modular maintenance and the 

parameter estimate of the effect of the technical debt on system failures from the additive hazard models. 

The mediated proportion is IE/TE. The schematic representation of the mediation analysis is shown in 

Figure 3. αm represents the change in technical debt as a result of one unit change in modular maintenance 

as modeled by a linear least squares regression. λc and λm represent the regression coefficients for Aalen’s 

additive hazard model when the survival status is regressed on maintenance and technical debt 

respectively. The results of the mediation analysis are presented in Tables 6 and 7. The results show that 

there is a significant mediation effect due to technical debt. We find that about 35% of the effect of 

                                                           
13

 Mediation analysis helps to test the structural relationship between client-level maintenance activities, technical 

debt, and system failures due to client errors, and complements our reasoning associated with hypotheses 2a and 2b. 

We thank an anonymous reviewer for suggesting this analysis. 

λc 

λm αm 
Modular Maintenance 

Architectural Maintenance 

Technical Debt 
System failure due to 

client errors 

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙⁡𝑑𝑒𝑏𝑡 =⁡∝0+⁡∝𝑚 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 + 𝜀 
∝ (𝑡) = ⁡𝛽0 +⁡λ𝑐𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 + λ𝑚𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙⁡𝑑𝑒𝑏𝑡 
∝ (𝑡) = ⁡𝛽0 +⁡λ𝑚 ∝0+ (∝𝑚 λ𝑚 +⁡λ𝑐)⁡𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙⁡𝑑𝑒𝑏𝑡 

 



   

modular maintenance on system failure reduction is mediated through technical debt reduction. Similarly, 

20% of the effect of architectural maintenance on system failure reduction is mediated through technical 

debt reduction. These results show that technical debt in an enterprise system accumulated over a period 

of time by a client could be reduced to a certain degree by targeted client-level maintenance activities. 

Furthermore, it confirms that modular maintenance undertaken by a client is more effective than 

architectural maintenance in reducing both the accumulated technical debt and system failures arising 

from the technical debt. 

Table 6: Effect of Maintenance on Technical Debt 

 Customization-

business logic 

Customization-

data schema 

API Violations 

Modular maintenance  -0.81
***

 -0.38
***

 -0.51
***

 

Architectural 

maintenance 
-0.19

***
 -0.25

***
 -0.18

***
 

Note: Estimates are adjusted for volatility, team experience, code size, logic complexity, data 

complexity, product age, client sites, consultants use, prior failures, and transaction 

volume; *** significant at p < 0.01 

Table 7: Mediation Effects through Technical Debt Reduction 

 DE (λ𝑐) IE 

(∝𝑚 λ𝑚) 
TE 

(λ𝑐 +
(∝𝑚 λ𝑚)) 

IE/TE 

Customization-business logic 

Modular maintenance -1.53
***

 -0.87
***

 -2.40
***

 0.36 

Architectural maintenance -0.92
***

 -0.23
***

 -1.15
***

 0.20 

Customization-data schema 

Modular maintenance -1.49
***

 -0.84
***

 -2.33
***

 0.36 

Architectural maintenance -0.90
***

 -0.19
***

 -1.09
***

 0.17 

API Violations 

Modular maintenance -1.61
***

 -0.87
***

 -2.48
***

 0.35 

Architectural maintenance -0.99
***

 -0.25
***

 -1.24
***

 0.20 

Note: Estimates are adjusted for volatility, team experience, code size, logic complexity, data 

complexity, product age, client sites, consultants use, prior failures, and transaction 

volume; *** significant at p < 0.01 

6. Discussion 

In this section we first use our empirical results to quantitatively evaluate a typical client’s business 

risk exposure due to technical debt accumulation in their enterprise system. Then, we illustrate how 

managers could perform cost-benefit analysis of maintenance projects that aim to reduce the business risk 

exposure arising from technical debt. Following this we present the best practices reported to us during 

our field research to manage technical debt.  Finally, we conclude by discussing implications for research. 



   

6.1. Managing Technical Debt in Enterprise Systems 

6.1.1. Managerial Evaluation of Business Risk Exposure from Technical Debt 

The results presented in Section 5 show that technical debt is associated with a significant 

increased probability of enterprise system failures. We next utilize the estimated probabilities of system 

failures from our empirical models to illustrate how software managers at client sites can evaluate their 

business risk exposures due to technical debt and derive risk management policies accordingly.  

Risk exposure is conventionally defined as the potential loss in value due to an unexpected event 

(Boehm 1991; Lyytinen et al. 1998).  The unexpected event of focus in this study is a system failure, and 

the risk exposure of a system failure is derived as: 

 𝑅𝑖𝑠𝑘⁡𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦⁡𝑜𝑓⁡𝑠𝑦𝑠𝑡𝑒𝑚⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ∗ ⁡𝐿𝑜𝑠𝑠⁡𝑑𝑢𝑒⁡𝑡𝑜⁡𝑠𝑦𝑠𝑡𝑒𝑚⁡𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

We collected data on the financial consequences of business process disruptions due to system failures 

through follow-up field interviews with the account managers at the client firms
14

.  We collected data 

pertaining to two of the most commonly used business processes supported by the enterprise software, the 

warehouse management business process and the accounts payable business process, and derived the risk 

exposures due to hazards in these two example processes.  

Table 8 presents the results of this analysis.  Column (1) in Table 8 lists the relevant modules of 

the enterprise system. The corresponding list of key hazards in the warehouse management and accounts 

payable business processes at the client firms is shown in Column (2).  The extent of technical debt 

accumulated in the modules, measured in terms of API violations and the business logic and data schema 

customizations that violated vendor-provided programming and design standards, is listed in Column (3).  

Applying our empirical model and the cumulative incidence function estimates from Section 5 we derived 

the estimated probabilities of system failures due to software errors in the modules and present them in 

Column (4) of Table 8.  Multiplying these estimated probabilities of system failures with the average 

financial loss due to the business process hazards (Table 8, Column (5)) gives the business risk exposure 

per system failure (Column (6)).  The sum of these values for all modules yields a total estimated business 

risk exposure value of about $0.9 million per firm per year due to technical debt for a typical client in our 

dataset.  

Technical debt build-up in enterprise systems is often not readily visible to business managers 

(Kruchten et al. 2012; Tom et al. 2013).  The derivation of estimated business risk exposure, as illustrated 

above, could highlight the potential impact of technical debt and help managers to assess whether the 

levels of technical debt accumulated in their enterprise systems are appropriate.  If the business risk 
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 As shown in Figure 2 in §3 we collected financial, project management, and personnel-related data for each of the system 

failures at client sites to derive the business risk exposures due to technical debt accumulation in the client systems. 



   

exposure stemming from technical debt is deemed inappropriate, then managers can plan targeted 

maintenance activities that reduce technical debt in the system and thus help reduce risk exposure in the 

key business processes supported by the system. We discuss the evaluation of such enterprise system 

maintenance decisions in the next section. 

Table 8. Evaluating Business Risk Exposure due to Technical Debt 
(1) (2) (3) (4) (5) (6) 

Module 
Hazard in 

business process 

Technical debt Estimated 

probabilit

y of 
system 

failure 

Average 

business 

process 
hazard loss 

(thousand $) 

Business 
risk 

exposure 
(thousand $) 

Customizations: 
business logic 

Customizations: 
data schema 

API 
Violations 

Invoice 

management 

Customer 
invoices not 

generated 

24.20 6.05 12.00 0.44 717.16 315.55 

Payments 

management 

Incorrect billing 

amounts 
collected 

11.40 2.85 4.00 0.21 179.58 37.71 

Customer order 
management 

Customer orders 

delivered to 

wrong locations 

3.50 0.88 0.00 0.04 1253.84 50.15 

Customer 

services 

Customer-
reported issues 

not recorded 

7.80 1.95 2.00 0.11 46.64 5.13 

Managerial 

reports 

Regulatory 

reports not filed 
31.90 7.98 13.00 0.54 744.91 402.25 

Warehouse 
management 

Wrong stock 
levels held 

6.70 1.68 2.00 0.13 1494.06 194.23 

Estimated typical client total annual business risk exposure due to technical debt ≈ $ 924,385 

6.1.2. Managerial Evaluation of Enterprise System Maintenance Decisions 

Having demonstrated how managers could utilize the models developed in this study to assess 

business risk exposures due to system failures, we extend our discussion to illustrate how our results 

could be utilized to evaluate system maintenance decisions.  

Let us consider a scenario where a client firm plans to reduce the estimated $0.9 million business 

risk exposure discussed above and proposes to conduct modular and architectural maintenance. We 

illustrate how our empirical model and results could be used to perform a cost benefit analysis to evaluate 

the above proposal. Following our discussion of competing risks, it is important to note that any project 

benefits, such as a reduction in business risks of technical debt, need to be adjusted for competing project 

risks, for example, the unexpected increase in system failures due to vendor errors.  

We derived nine hypothetical maintenance project scenarios by choosing values for client 

maintenance investments at the mean level, and at approximately one standard deviation above and below 

the mean level for the two types of maintenance, modular and architectural.  These nine scenarios are 

shown in Table 9.  The resulting code coverage and architectural interfaces examined in the maintenance 

projects covered a range from 0% to 70%.   



   

Table 9. Nine Hypothetical Maintenance Project Scenarios (S1-S9) 

  
Architectural maintenance 

  
Below average Average Above average 

Modular 
maintenance 

Below 
average 

S1: (0%, 0%) S2: (0%, 30%) S3: (0%, 70%) 

Average S4: (30%, 0%) S5: (30%, 30%) S6: (30%, 70%) 

Above 
average 

S7: (70%, 0%) S8: (70%, 30%) S9: (70%, 70%) 

 

For each of the business process hazards in Column (2) of Table 8 we analyze the nine 

hypothetical scenarios (Table 9) for the proposed maintenance projects that were within the ranges of 

activity at the client firms in our dataset.  For each of these scenarios we collected actual maintenance 

costs from projects conducted at our client sites. As described in §6.1.1 we derived risk exposure values 

for each business process hazard under the nine maintenance scenarios. For each of the scenarios we 

calculated the reduction in risk exposure levels by utilizing the regression estimates of the hazard of 

system failures due to client errors (Table 4). The modular and architectural maintenance activities in the 

proposed project would also introduce new hazards arising from conflicts with the errors in the vendor 

supplied platform.  We estimated the increase in business risk exposure due to this new hazard by 

utilizing the regression results presented in Table 4, and then calculated the overall return on investments 

for each of the maintenance scenarios.  

The pattern of return on investments for different maintenance scenarios is summarized in Figure 

6
15

. As can be seen from Figure 6, not all maintenance scenarios yield net positive benefits. The estimated 

return on investment of Scenario 4 (30% modular coverage and no architectural coverage) is the highest 

at 95.45%.  The project with the highest level of maintenance investments, Scenario 9, which involves 

70% modular coverage and 70% architectural coverage, actually results in a net loss with a return of 

investments of -142.58%, according to this analysis.  
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Detailed module-level cost-benefit estimates are presented in Table A1 of the online Appendix (§A4). The return on 

investments patterns are consistent whether we use cumulative project values or average the values over the six modules 

considered in the illustration. 



   

Figure 6: Estimated Return on Investments from Maintenance Projects 

Note: These Figure 6 results are intended only to show the estimated impact of technical debt 

on maintenance costs and risk exposure under various scenarios. These results should 

not be interpreted as the effectiveness or ineffectiveness of maintenance policies at the 

client sites. This analysis does not include potential opportunity costs, business benefits 

other than maintenance cost savings, and other competitive advantages that a client site 

might accrue based on the firm’s specific technical debt-handling strategy.  

These results illustrate our belief that technical debt reduction in enterprise systems is not 

straightforward because of the interdependencies between client-related and vendor-related tasks and the 

knowledge asymmetry between the clients and the vendor. Therefore, more investments in client-level 

maintenance activities may not necessarily translate into business benefits. In the presence of technical 

debt, higher levels of client maintenance activities are not only expensive, but also have a higher chance 

of introducing new hazards due to conflicts with vendor’s maintenance activities, and thereby causing 

project losses.  On the other hand, projects that aim for targeted and incremental technical debt reduction, 

which is synchronized with the vendor’s roadmap for the product lifecycle, could yield benefits by 

reducing the business risk exposure of clients.  Our empirical models and results, along with a cost-

benefit analysis like the one illustrated above, could help managers to evaluate their portfolio of 

maintenance project proposals in a judicious manner and invest appropriately in the most beneficial 

portfolios.  

6.1.2.1. Industry Best practices 

In addition to the statistical analysis this research required an extensive amount of field research 

and interactions with technical staff and management at the 48 client sites, as summarized in Figure 2.  



   

Through this more qualitative work we observed two apparent key best practices, both of which 

corroborate well with our empirical results. First, client firms who participated more actively in vendor-

initiated activities, such as trade conferences and product roadshows, seemed to be more capable of 

identifying use-specific configurations and modifications that could potentially be in conflict with the 

future evolution of the product. Such teams had established good networks with specialists from the 

vendor firm, which helped reduce their knowledge asymmetry with the vendor. By participating in the 

vendor-initiated conferences clients had to reveal their firm-specific practices, which had the risk of 

competitive advantage erosion due to imitation by competitors. However, the benefits of participation 

may outweigh these perceived risks because they could help reduce the knowledge asymmetry with the 

vendor, and thereby avoid conflicts with the vendor’s product evolution and the subsequent system 

failures that tend to create significant business losses, as estimated above. 

The second best practice we observed involved choosing the appropriate modules of the enterprise 

system to customize and modify.  It is a common practice for clients of COTS systems to aggressively 

modify vendor-supplied modules that are perceived as “weak”, for example, modules that lack 

functionality when they are released (Davenport 1998).  However, counter-intuitively, client firms who 

had the highest levels of system reliability, more often than not, seemed to avoid modifying the weaker 

modules supplied by the vendor. This strategy makes sense in light of our empirical results related to 

competing risks in the COTS enterprise system context. Over the lifecycle of a COTS enterprise system 

product the vendor typically tends to allocate resources to the modules that were perceived as weak 

during the initial release and attempts to improve them over the product’s evolution. A client who 

engages in aggressive source code modifications early on in an attempt to rectify the vendor-supplied 

module weaknesses tends to accumulate technical debt, all else being equal. Even though such client 

customizations might yield short-term business benefits, as our results show the accumulated technical 

debt has the potential to cause severe system failures later in the system’s lifecycle. Completely 

eradicating the accumulated technical debt is challenging, and therefore the business risk exposure values 

of these clients increase with time. In contrast, clients who adopt a “wait and watch” strategy benefit from 

vendor-initiated improvements in enterprise systems with long lifecycles. Therefore, we recommend 

judicious selection of modules for pursuing use-specific modifications and holding back such 

customization projects until the vendor’s standard release has reasonably matured.  

6.2. Implications for Research 

In addition to the above managerial implications we highlight three important implications for 

research. First, this study has empirically quantified the negative impact of technical debt on enterprise 

system reliability and the presence of competing risks that influence enterprise system failures. Therefore, 



   

in the enterprise systems context, software maintenance decision models need to account for the patterns 

of technical debt accumulation and reduction over the lifespan of the systems while deriving optimal 

maintenance policies. Furthermore, construction of models that account for costs of software quality need 

to be done in a way to accommodate the competing risks that accompany technical debt reduction. The 

presence of technical debt often makes software maintenance imperfect, and omitting the new hazards 

introduced during a maintenance activity would lead to biased calculations of returns on investments of 

software maintenance activities and business risk exposures valuations. 

Second, this study has established the presence of interdependencies between vendor and client 

tasks in the toolkit approach to enterprise software product development, which significantly influences 

the reliability of the systems and consequently the business risk exposure of clients. There is a need for 

research that sheds light on client and vendor strategies that could mitigate the effects of this 

interdependence, possibly through a reduction of knowledge asymmetry between the vendor and clients. 

Furthermore, exploring the co-evolution of the enterprise system variants at client firms and the vendor’s 

standard product releases could reveal how the interdependence between client and vendor versions of the 

product varies over the lifecycle of the enterprise system, revealing clues as to how the transitions to new 

product versions could be effectively managed by clients.  

Finally, our examination of the relative effects of modular and architectural maintenance 

activities to reduce technical debt revealed a challenging tradeoff.  We found that modular maintenance 

activities were more effective in reducing system failures due to software errors from client modifications 

than architectural maintenance.  However, modular maintenance activities increase the probability of 

system failures due to residual software errors that are found in the vendor-supplied platform by as much 

as two times more than architectural maintenance. Because of this tradeoff, as illustrated in §6, 

calculating the benefits of software maintenance investments targeted at reducing technical debt is not 

straightforward. Therefore, research studies that focus on deriving maintenance policies and designing 

software maintenance project portfolios need to carefully account for the accumulated levels of technical 

debt in enterprise systems, as well as the distribution of resources across modular and architectural 

maintenance.  

Future research could expand the contributions of this study in a number of ways.  First, 

replicating the study using different COTS products from multiple vendors would help to assess the 

degree of generality of the results.  Second, and more expansive, would be an investigation of the impact 

of technical debt in product platform ecosystems, where distinct product families are based on a single 

core software platform (Meyer et al. 1997; Ceccagnoli et al. 2012).  The competing risks approach 

advocated in this research could be particularly useful in understanding how technical debt in one product 

family propagates across the ecosystem in which it is situated.  Another research direction would be to 



   

examine how vendors and clients of enterprise systems manage technical debt during periods of 

technological transitions (Iansiti 2000).  Investigating the circumstances under which technical debt 

hastens or hinders transitions to new technological paradigms would help further our understanding of the 

diffusion of new innovations in the software product development industry.  There is also an opportunity 

to expand the cost-benefit analysis of technical debt reduction reported in this paper. For example, future 

research could extend the analysis by attempting to specifically account for business opportunity costs 

that arise from a technical debt-avoiding maintenance policy as well as fully accounting for possible 

heterogeneity in client site-level maintenance policies.
16

 Finally, examining the relationship between the 

software process maturity of product development teams and technical debt in their projects could help to 

establish important process-related antecedents of technical debt accumulation in enterprise software 

products. 

7. Summary and Conclusion 

This research investigated the reliability of COTS-based enterprise systems, which are critical 

business platforms for the operations of modern organizations.  We specifically addressed the research 

challenges that stem from the interdependencies between the vendor-supplied enterprise system platform 

and the customizations done by individual clients through a competing risks analysis approach.  By 

empirically examining a longitudinal dataset spanning the 10 year lifecycle of a COTS-based enterprise 

software system deployed at 48 different client firms, we advanced a method to measure technical debt in 

an enterprise system and assess its impact on the reliability of the system.  The competing risks approach 

we deployed for our empirical analysis enabled us to accurately estimate the impact of technical debt by 

accounting for event-specific hazards that impact the reliability of an enterprise software system due to 

the specific actions taken by both the vendor and the client firms throughout the evolution of the system.  

Moreover, we examined the economic payoff from modular and architectural software maintenance 

aimed at reducing the technical debt of an enterprise system, and demonstrated how the results of the 

study could aid managerial decision-making related to controlling business risk exposures due to 

enterprise system failures.  
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Online Appendix 

A1. Mining the Software Repository and Identifying Software Changes 

A1.1. Mining the Software Repository 

At the vendor and client sites of this research study the software production process involved a 

robust software configuration management system called Perforce version control (Perforce 2014). This 

system was the central repository that stored the different versions of the software and associated 

documents during the ten year lifecycle of the enterprise systems we studied. Data in this central 

repository was organized in terms of projects. Each project consisted of system files at the granularity of 

revisions done to the system files at every hour during the ten year period. Overall, there were about 6100 

projects, 45 million system files, and about 1.2 billion file revisions done by 4133 developers accounting 

to a total size of about 2TB of software archival data. 

Although the individual software production processes at the 48 client firms varied, they all 

followed a similar structure composed of development and maintenance phases, and the data in the 

repository reflected this distinction between the different phases, and project data was organized into 

different trunks and branches of a product release. When the vendor released a maintenance patch (called 

a service pack), clients created a separate branch of a project in which they assembled, tested, and 

deployed the service pack provided by the vendor. All client-driven changes were also maintained in the 

same way in separate project trunks and branches. This organization helped us parse the software 

repositories and identify all the individual changes to a client system, and classify them into vendor or 

client-driven changes. Similar to the experience of other software researchers, we were able to identify 

which software changes happened, and where they happened in the source code for the systems at all our 

client firms (Holschuh et al. 2009).  

A1.2. Identifying and Sequencing Changes 

To build an empirical dataset from the software repository we utilized a proprietary tool supplied 

by the vendor to parse the software code in the repository. Utilizing this tool, we were able to parse the 

different versions of the system files in the repository (version histories) to identify the components of an 

enterprise system that changed together at a given time, which is termed evolutionary coupling 

(Zimmerman et al. 2005).  Using the vendor-supplied tool we could identify evolutionary coupling at 

different granularities, such as at the levels of hourly time intervals, system files, and even at the entities 

level, for example at the level of classes and methods in object-oriented program code. We utilized these 

evolutionary couplings to perform the phase and sequence analyses to identify and sequence the changes 

that happened to the enterprise systems at our client sites over the ten year period. Through trial and error, 

and iteratively refining the evolutionary coupling entities at different time intervals, we determined that a 

monthly aggregation of changes was optimal for our empirical data construction. This aligned well with 

the monthly product release history documents that we collected from the product management division 

of the firm. Therefore, our dataset is organized according to 120 evolutionary phases (12 months x 10 

years) during which we observe system failures. 

A1.3. Cause-Effect Analysis 

For each incidence of a system failure we performed a cause-effect analysis utilizing the fault tree 

analysis (FTA) procedures established in the software engineering literature (Nakajo and Kume 1991). 

During FTA we utilized pre-defined classification methods using the failure causes already known to the 

clients and the vendor, as well as emergent classification schemes based on clustering of similar data from 

the historical software repositories. The emergent classification schemes were particularly helpful to 

identify root causes of system failures when a particular system change involved both client and vendor-

driven changes. Whenever there was ambiguity in the root causes classification, we collaborated with the 

client and vendor system administrators and quality assurance personnel to resolve the ambiguity. In the 



   

final dataset all system failures were clearly marked as caused by either client errors or vendor errors, and 

there were no overlap between these classifications.  

A2. Data Structure  

We tracked the evolution of the enterprise systems at 48 clients over a ten year period. Figure A1 

shows the cumulative time period in months when the system was active in production at each of the 48 

client sites and the total number of client error and vendor error failures at those sites. We can see from 

Figure A1 that the data is right-censored as the systems at different client sites experienced different 

failure rates, maintenance schedules, and were eventually retired at different time periods. In a given time 

period, a system at a client site could fail because of client errors or due to vendor errors. That is, client 

and vendor errors compete for system failure. A system failure typically evokes a comprehensive 

maintenance response including a systematic root-cause analysis and bug fixing effort. After the 

maintenance following a failure, a client system is typically denominated with a different version number 

because it would have been ‘patched’ with the latest bug and stabilization fixes released by the vendor. To 

employ the competing risks modeling approach, we treat the different versions of a system at a client site 

as siblings in a family and cluster them (using client id) to account for correlations due to unobserved 

shared factors. Overall, the dataset includes a total of 3641 observations with 193 system failures due to 

client errors and 191 system failures due to vendor errors.  

Figure A1. Histogram of Observations 

A3. Technical Debt, Modular and Architectural Maintenance: An Example from the Dataset 

In this example we focus on events specific to the warehouse management business process of 

client #23 in our dataset. At time t=1 the warehouse management system went live in production at the 

client site. Throughout the first year (until t=12) the client used the vendor-provided system without any 

modifications. At time t=13, the client modified the source code and database schema of the system to 

implement a modified way of allocating warehouse space to items. This involved redefining the barcode 

generation scheme, as well as the corresponding storage procedures in the database. In implementing this 

custom business logic, the client violated 3 vendor-provided APIs (barcode generator, warehouse job 

scheduler, database monitoring job). Furthermore, 30% of the modified code and 25% of the new 

database schema also violated the vendor-prescribed design and programming standards. While 



   

implementing the new system changes the client team also undertook maintenance activities to integrate 

the new source code and database schema with other parts of the system. These maintenance activities 

involved examining 10% of the overall source code of the system and 5% of the interconnections between 

the different modules involved in the system integration.  

At the start of the next time period (t=14), the modified system went live in production at the 

client site. For the next three time periods no system failures were reported. However, during this period 

the vendor released service packs to update its base platform. Normally (as seen in t=2 to t=12), these 

vendor-provided updates were automatically patched to the system without any additional effort required 

from the client. However, since the source code was modified at t=13, automatic updating of vendor 

service packs was disabled. To implement the vendor service packs, the client team had to manually 

inspect and test the system. We observed that the maintenance effort to implement each of the vendor 

update packs was similar to the effort spent to integrate the business logic and database change made by 

the client at t=13 (modular maintenance: 10% and architectural maintenance:5%). 

At t=18 the system failed. The root cause analysis revealed that the failure was due to a client 

error that stemmed from the system modifications done by the client at t=13. The system failed because it 

could not resolve a conflict when two different items with the same barcodes were competing for 

warehouse shelf space at the same time. Because of faulty business logic in the barcode generation 

function implemented by the client, two different items were allocated the same barcode at the same time. 

Furthermore, the vendor-provided database schema and API for periodic database monitoring were 

circumvented by the client. Thus, the vendor-provided database monitoring job could not alert about 

duplicate barcodes in the database in a timely fashion to prevent the eventual conflict and system failure. 

To resolve the system failure issue the client teams undertook maintenance activities that involved 

modification of the barcode generation and warehouse space allocation functions. The database was also 

purged of all duplicate barcode records for different warehouse items. The maintenance also contributed 

to a decrease in technical debt in the system as the client teams partially reverted back to the original 

vendor-provided libraries for the barcode generation, warehouse space allocation, and database 

monitoring functions. One of the API violations pertaining to the database monitoring job was also fully 

resolved. Overall, this corrective maintenance effort involved modular maintenance activities that 

involved examination of about 75% of all module-level functions in the system and architectural 

maintenance that involved examining about 20% of the interfaces between the modules. 

Between t=19 and t=23 there were no system failures at the client site. However, as seen earlier 

(t=14 to t=17), vendor-provided updates were not automatically patched to the system. To implement the 

vendor service packs, the client team had to manually inspect and test the system (modular maintenance: 

50% and architectural maintenance: 10%). We observed that the maintenance effort to implement each of 

the vendor update packs was higher than before at t=13 and t=14. More of the maintenance effort was 

spent on modular maintenance, presumably to avoid system failures similar to the one that happened at 

t=18. 

At t=24 the system failed again. This time the root cause analysis was a lengthy and complex 

process as the client and vendor teams had to go back and forth to localize the error and allocate 

responsibilities to fix the problem. Eventually, the root cause analysis revealed that the failure was due to 

a dormant vendor error related to the cache sizes allocated to barcodes. The original vendor design for file 

caching had not anticipated more than a million items in the warehouse. Even though the vendor’s 



   

database scheme could accommodate more than a billion barcodes, the file caching systems implemented 

by the vendor could not handle barcodes that were more than 7 digits. The client’s modified business 

logic and the subsequent maintenance to the barcode generation scheme to avoid duplicates (t=18) had 

contributed to a deluge of barcodes in the client’s system. At t=24 the newly generated barcodes exceeded 

7 digits and triggered the error in the file caching function that caused the system failure. Thus, the client 

modification of the barcode generation scheme and the subsequent client-driven maintenance activities to 

prevent duplicate records had triggered a dormant vendor error.  

The vendor issued a service pack to rectify the file caching problem at no cost to the client. 

However, to implement the service pack the client had to undertake additional maintenance activities as 

automatic updating of vendor service packs was not possible because of the source code modifications. 

This maintenance effort was mostly spent on architectural maintenance including the verification of file 

caching interfaces across the different modules, the corresponding API parameters, and the modified 

database schemas. It is important to note that at the end of t=24 when the system was reinstituted after the 

resolution of the file caching error, technical debt level of the client’s system had not altered. This is 

because the maintenance activities pertaining to the resolution of the file caching error did not involve 

rolling back the modifications to the business logic or database changes enacted at t=13 and subsequently 

at t=18. 

A4. Return on Investments for Various Maintenance Scenarios 

Table A1 presents detailed module-level results of the cost benefits analysis for various 

maintenance scenarios, which were summarized in Figure 6 in §6.1.2 of the paper.  For each of the 

business process hazards in Column (2) of Table A1 we analyze the nine hypothetical scenarios (Column 

(3)) for the proposed maintenance projects that were within the ranges of activity at the client firms in our 

dataset.  For each of these scenarios we collected actual maintenance costs from projects conducted at our 

client sites. The average values of these maintenance costs for the respective modules are reported in 

Column (4) of Table A1.  As described in §6.1.1 of the paper, we derived risk exposure values for each 

business process hazard under the nine maintenance scenarios. For each of the scenarios we calculated the 

reduction in risk exposure levels by utilizing the regression estimates of the hazard of system failures due 

to client errors (§5, Table 4). These values are presented in Column (5) of Table A1. The modular and 

architectural maintenance activities in the proposed project might also introduce new hazards arising from 

conflicts with the errors in the vendor supplied platform.  We estimated the increase in business risk 

exposure due to this new hazard by utilizing the regression results presented in the paper (§5, Table 4), 

and report them in Column (6) of Table A1. Column (7) presents the module-level net benefits or losses 

estimated for each of the maintenance scenarios, and the corresponding return on investments is shown in 

Column (8) of Table A1.  

 



   

Table A1. Evaluating Enterprise System Maintenance Decisions 
(1) (2) (3) (4) (5) (6) (7) (8) 

Module 
Hazard in business 
process 

Project Scenario 

(modular%, 

architectural%) 

Maintenance 
project cost ($) 

Reduction in 

risk exposure  

(thousand $) 

Increase in 

risk exposure 

(thousand $)  

Benefits (Losses) 

of maintenance 

project ($) 

Return on 

Investments 

(%) 

Invoice 
management 

Customer invoices 
not generated 

S1: (0%,   0%) $0.00 $0.00 $0.00 $0.00 0.00 
S2: (0%, 30%) $42,210.07 $78.89 $15.78 $20,899.93 49.51 
S3: (0%, 70%) $98,490.15 $94.67 $25.24 -$29,069.15 -29.51 
S4: (30%, 0%) $28,140.04 $126.22 $59.95 $38,125.46 135.48 

S5: (30%, 30%) $70,350.11 $205.11 $63.11 $71,647.39 101.84 
S6: (30%, 70%) $126,630.20 $220.89 $94.67 -$410.20 -0.32 

S7: (70%,   0%) $65,660.10 $189.33 $126.22 -$2,550.10 -3.88 
S8: (70%, 30%) $107,870.17 $268.22 $189.33 -$28,982.67 -26.87 

S9: (70%, 70%) $164,150.26 $315.55 $220.89 -$69,485.26 -42.33 

Payments 
management 

Incorrect billing 
amounts collected 

S1: (0%,   0%) $0.00 $0.00 $0.00 $0.00 0.00 

S2: (0%, 30%) $25,751.38 $29.79 $2.75 $1,291.81 5.02 
S3: (0%, 70%) $66,753.21 $31.37 $3.15 -$38,524.15 -57.71 
S4: (30%,  0%) $15,500.92 $32.17 $3.98 $12,686.26 81.84 
S5: (30%, 30%) $26,252.30 $32.96 $2.01 $4,696.24 17.89 
S6: (30%, 70%) $87,254.13 $35.82 $6.06 -$57,493.55 -65.89 

S7: (70%,   0%) $42,835.48 $34.54 $6.73 -$15,020.28 -35.07 
S8: (70%, 30%) $73,586.85 $35.33 $6.99 -$45,245.04 -61.49 

S9: (70%, 70%) $114,588.69 $36.13 $7.26 -$85,720.26 -74.81 

Customer 

order 

management 

Customer orders 

delivered to wrong 

locations 

S1: (0%,   0%) $0.00 $0.00 $0.00 $0.00 0.00 

S2: (0%, 30%) $5,527.79 $7.03 $1.34 $1,500.87 27.15 
S3: (0%, 70%) $12,731.51 $7.83 $3.14 -$4,904.65 -38.52 
S4: (30%, 0%) $3,951.86 $8.23 $6.09 $4,272.05 108.10 
S5: (30%, 30%) $8,479.65 $9.64 $8.69 $1,147.66 13.53 
S6: (30%, 70%) $15,083.38 $10.04 $11.03 -$5,054.41 -33.51 
S7: (70%,   0%) $10,921.01 $11.34 $17.76 $401.23 3.67 
S8: (70%, 30%) $12,848.80 $12.85 $18.88 -$19.68 -0.15 

S9: (70%, 70%) $19,552.52 $14.05 $20.14 -$5,520.16 -28.23 

Customer 
services 

Customer-reported 

issues not 

recorded 

S1: (0%,   0%) $0.00 $0.00 $0.00 $0.00 0.00 

S2: (0%, 30%) $36,129.95 $1.54 $0.73 -$35,322.80 -97.77 
S3: (0%, 70%) $84,303.21 $2.05 $1.47 -$83,718.92 -99.31 

S4: (30%, 0%) $24,086.63 $2.93 $2.13 -$23,281.92 -96.66 
S5: (30%, 30%) $60,216.58 $3.59 $1.61 -$58,236.58 -96.71 
S6: (30%, 70%) $108,389.84 $4.09 $4.40 -$108,696.98 -100.28 
S7: (70%,   0%) $56,202.14 $4.88 $8.06 -$59,383.57 -105.66 
S8: (70%, 30%) $92,332.08 $5.36 $9.45 -$96,425.94 -104.43 
S9: (70%, 70%) $140,505.34 $6.13 $9.53 -$143,902.49 -102.42 

Managerial 

reports 

Regulatory reports 

not filed 

S1: (0%,   0%) $0.00 $0.00 $0.00 $0.00 0.00 

S2: (0%, 30%) $34,259.14 $100.56 $13.41 $52,895.03 154.40 
S3: (0%, 70%) $79,937.99 $120.68 $35.58 $5,160.23 6.46 

S4: (30%, 0%) $22,839.43 $160.90 $91.03 $47,025.74 205.90 
S5: (30%, 30%) $57,098.57 $261.46 $156.81 $47,557.79 83.29 

S6: (30%, 70%) $102,777.42 $281.58 $268.62 -$89,819.80 -87.39 
S7: (70%,   0%) $53,291.99 $241.35 $425.15 -$237,095.09 -444.90 
S8: (70%, 30%) $87,551.13 $341.91 $629.25 -$374,884.50 -428.19 
S9: (70%, 70%) $133,229.99 $402.25 $897.43 -$628,414.77 -471.68 

Warehouse 

management 

Wrong stock 

levels held 

S1: (0%,   0% $0.00 $0.00 $0.00 $0.00 0.00 
S2: (0%, 30%) $33,373.56 $48.56 $4.86 $10,328.19 30.95 
S3: (0%, 70%) $147,871.64 $92.26 $12.82 -$68,431.57 -46.28 

S4: (30%, 0%) $42,249.04 $133.05 $32.49 $58,309.66 138.01 
S5: (30%, 30%) $105,622.60 $172.82 $55.16 $12,032.80 11.39 

S6: (30%, 70%) $190,120.68 $187.81 $92.57 -$94,884.19 -49.91 
S7: (70%,   0%) $98,581.10 $191.66 $142.76 -$49,679.99 -50.40 

S8: (70%, 30%) $161,954.66 $193.84 $205.10 -$173,212.35 -106.95 
S9: (70%, 70%) $246,452.74 $194.23 $282.97 -$335,194.77 -136.01 
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